PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Forming the area of unacceptable values of the parameters of vessels’ movement for the vessels’ divergence at remote control process

Treść / Zawartość
Identyfikatory
Języki publikacji
EN
Abstrakty
EN
Navigation traffic and the danger of collision are steadily increasing. Features of navigation in narrow corridors (water, air, etc.) require the development of modern methods for assessing the situation of convergence and the choice of maneuvering divergence of vessels. A method is proposed for forming the area of inadmissible values of the parameters of the movement of any vehicles (including marine) with remote control of the process of their divergence. Situations are considered when a collision of sea vessels can be avoided only by changing the speed in case such vessels cannot change course. The proposed method can be generalized to any environment of navigation.
Twórcy
autor
  • National University “Odessa Maritime Academy” Didrikhson str. 8, Odessa, 65029, Ukraine
  • National University “Odessa Maritime Academy” Didrikhson str. 8, Odessa, 65029, Ukraine
  • National University “Odessa Maritime Academy” Didrikhson str. 8, Odessa, 65029, Ukraine
  • Petro Mohyla Black Sea National University 68 Desantnykiv str.10, Mykolaiv, 54003, Ukraine
Bibliografia
  • [1] B.S. Dhillon, Airline and Ship Safety, in: Appl. Saf. Eng., CRC Press, Boca Raton, 2021: pp. 97–110. https://doi.org/10.1201/9781003212928-8.
  • [2] A. Heßelbarth, R. Ziebold, M. Sandler, J. Alberding, M. Uhlemann, M. Hoppe, M. Bröschel, Driver assistance functions for safety inland vessel navigation, in: 13th Int. Symp. Integr. Ship’s Inf. Syst. Mar. Traffic Eng. Conf., Berlin, Germany, 2018.
  • [3] CEVNI European Code for Inland Waterways, 6th ed., Geneva, Switzerland, 2022. https://doi.org/10.18356/9789210058650.
  • [4] K. Kalinov, S. Lutzkanova, B. Mednikarov, Aspects of human element management in shipping, in: Proc. - 16th Annu. Gen. Assem. Conf. Int. Assoc. Marit. Univ. IAMU AGA 2015, 2020: pp. 129–133.
  • [5] M. Melaika, A. Rimkus, S. Pukalskas, J. Žaglinskis, Simulation of parameters of SI Engine using H2 and CH 4 fuel blends, in: Transp. Means - Proc. Int. Conf., Kaunas, 2013: pp. 13–16.
  • [6] Convention on the International Regulations for Preventing Collisions at Sea (COLREG), Leg. Order Ocean. 1972 (2021). https://doi.org/10.5040/9781509955572.0024.
  • [7] K.L. Woerner, M.R. Benjamin, M. Novitzky, J.J. Leonard, Collision avoidance road test for COLREGS-constrained autonomous vehicles, in: Ocean. 2016 MTS/IEEE Monterey, OCE 2016, IEEE, 2016: pp. 1–6. https://doi.org/10.1109/OCEANS.2016.7761413.
  • [8] M.P. Musiyenko, O.O. Denysov, I.M. Zhuravska, I.S. Burlachenko, Development of double median filter for optical navigation problems, in: Proc. 2016 IEEE 1st Int. Conf. Data Stream Min. Process. DSMP 2016, IEEE, 2016: pp. 177–181. https://doi.org/10.1109/DSMP.2016.7583535.
  • [9] K. Hirayama, K. Miyake, T. Shiota, T. Okimoto, DSSA+: Distributed collision avoidance algorithm in an environment where both course and speed changes are allowed, TransNav. 13 (2019) 117–123. https://doi.org/10.12716/1001.13.01.11.
  • [10] L. Kasyk, An influence of the order to maintain minimum distance between successive vessels on the vessel traffic intensity in the narrow fairways, Mar. Navig. Saf. Sea Transp. 4 (2009) 273–275. https://doi.org/10.1201/9780203869345.ch49.
  • [11] K. Obukhova, T. Savchuk, I. Zhuravska, A. Boiko, V. Nikolskyi, S. Puzyrov, Prevention of Unmanned Vessels Collisions due to Pre-modeling the Remote Control Center CPU Load, in: Int. Sci. Tech. Conf. Comput. Sci. Inf. Technol., IEEE, 2021: pp. 202–205. https://doi.org/10.1109/CSIT52700.2021.9648800.
  • [12] I. Burmaka, M. Kulakov, Y. Khussein, O. Yanchetskyy, Methods of ships’ external steering in condition of close quarters situation, Transp. Means - Proc. Int. Conf. 2020-Septe (2020) 753–756.
  • [13] A. Graser, P. Widhalm, Modelling massive AIS streams with quad trees and Gaussian Mixtures, in: 21st Agil. Int. Conf. Geogr. Inf. Sci., At: Lund, Sweden, 2018.
  • [14] U. Vaidya, Optimal motion planning using navigation measure, Int. J. Control. 91 (2018) 989–998. https://doi.org/10.1080/00207179.2017.1300838.
  • [15] I. Gladkykh, A. Golikov, I. Vorokhobin, J. Oliynyk, AIS AtoN Network Simulation on the Dangerous Section of the Dnieper River, Transp. Means - Proc. Int. Conf. 2021-Octob (2021) 268–272.
  • [16] X. RYU, S. SHIOTANI, K. SASA, Study on Valuation for Navigational Simulation and Sea Navigation System, J. Japan Soc. Civ. Eng. Ser. B3 (Ocean Eng. 71 (2015) I_197-I_202. https://doi.org/10.2208/jscejoe.71.i_197.
  • [17] X. GAO, S. SHIOTANI, The Fundamental Studies for Presentation of Navigational Information on Coast Using GIS -Effective Communication of Water Depth Information for Prevention of Grounding -, J. Japan Inst. Navig. 128 (2013) 167–173. https://doi.org/10.9749/jin.128.167.
  • [18] O. Blintsov, P. Maidaniuk, Development of informationally-protected system of marine water area monitoring, Eastern-European J. Enterp. Technol. 6 (2017) 10–16. https://doi.org/10.15587/1729-4061.2017.118851.
  • [19] G. Xu, C.H. Chen, F. Li, X. Qiu, AIS data analytics for adaptive rotating shift in vessel traffic service, Ind. Manag. Data Syst. 120 (2020) 749–767. https://doi.org/10.1108/IMDS-01-2019-0056.
  • [20] H. Ukhina, V. Sytnikov, O. Streltsov, P. Stupen, D. Yakovlev, Specialized computer systems digital bandpass frequency-dependent components rearrangement, in: Proc. 2019 10th IEEE Int. Conf. Intell. Data Acquis. Adv. Comput. Syst. Technol. Appl. IDAACS 2019, IEEE, 2019: pp. 168–171. https://doi.org/10.1109/IDAACS.2019.8924368.
  • [21] O. Zaichenko, P. Galkin, M. Miroshnyk, N. Zaichenko, A. Miroshnyk, Application of Six-Port for Distance Measurement, in: 2020 IEEE Int. Conf. Probl. Infocommunications Sci. Technol. PIC S T 2020 - Proc., IEEE, 2021: pp. 97–100. https://doi.org/10.1109/PICST51311.2020.9467958.
  • [22] I. Vorokhobin, I. Zhuravska, I. Burmaka, I. Kulakovska, Analysis of the error distribution density convergence with its orthogonal decomposition in navigation measurements, J. Phys. Conf. Ser. 2090 (2021) 012126. https://doi.org/10.1088/1742-6596/2090/1/012126.
  • [23] T. Zhang, C. Liu, B. Wen, Abnormal Ship Behavior Detection after the Closure of AIS Based on Radar Data, 5 (2021). https://doi.org/10.21203/rs.3.rs-551597/v1.
  • [24] C.M. Jiang, Z.Y. Zheng, S.L. Li, A Novel Model of Corrected Key Navigational Parameters of Ship AIS based on CCRP, in: Proc. - 2020 5th Int. Conf. Inf. Sci. Comput. Technol. Transp. ISCTT 2020, IEEE, 2020: pp. 513–517. https://doi.org/10.1109/ISCTT51595.2020.00097.
  • [25] L. Sun, Y.L. Zhao, J. Zhang, Research on path planning algorithm of unmanned ship in narrow water area, J. Phys. Conf. Ser. 2029 (2021) 012122. https://doi.org/10.1088/1742-6596/2029/1/012122.
  • [26] I. Gladkykh, A. Golikov, I. Vorokhobin, M. Kulakov, Development prospects of the Ukrainian section of the shipping route E-40, in: Transp. Means - Proc. Int. Conf., 2020: pp. 860–864.
  • [27] R. Gabruk, M. Tsymba, Safety of dynamic positioning, in: Act. Navig. Mar. Navig. Saf. Sea Transp., Taylor & Francis Group, London, UK, 2015: pp. 25–31. https://doi.org/10.1201/b18513.
  • [28] J. Lisowski, Multistage dynamic optimization with different forms of neural-state constraints to avoid many object collisions based on radar remote sensing, Remote Sens. 12 (2020) 1020. https://doi.org/10.3390/rs12061020.
  • [29] I. Vorokhobin, I. Burmaka, I. Fusar, O. Burmaka, Simulation Modeling for Evaluation of Efficiency of Observed Ship Coordinates, TransNav, Int. J. Mar. Navig. Saf. Sea Transp. 16 (2022) 137–141. https://doi.org/10.12716/1001.16.01.15.
  • [30] J. Lisowski, Cooperative and Non-Cooperative Game Control Strategies of the Ship in Collision Situation, TransNav, Int. J. Mar. Navig. Saf. Sea Transp. 12 (2018) 83–91. https://doi.org/10.12716/1001.12.01.09.
  • [31] H. Li, J. Liu, R.W. Liu, N. Xiong, K. Wu, T.H. Kim, A dimensionality reduction-based multi-step clustering method for robust vessel trajectory analysis, Sensors (Switzerland). 17 (2017) 1792. https://doi.org/10.3390/s17081792.
  • [32] F. Yin, J. Mou, J. Qiu, A Bayesian MCMC approach to study the safety of vessel traffic, in: ICTIS 2011 Multimodal Approach to Sustain. Transp. Syst. Dev. - Information, Technol. Implement. - Proc. 1st Int. Conf. Transp. Inf. Saf., American Society of Civil Engineers, Reston, VA, 2011: pp. 1838–1847. https://doi.org/10.1061/41177(415)232.
  • [33] M. Blaich, S. Weber, J. Reuter, A. Hahn, Motion safety for vessels: An approach based on Inevitable Collision States, in: IEEE Int. Conf. Intell. Robot. Syst., IEEE, 2015: pp. 1077–1082. https://doi.org/10.1109/IROS.2015.7353504.
  • [34] I.A. Burmaka, G.E. Kalinichenko, M.A. Kulakov, Management By Pair of Vessels in Situation of Dangerous Rapprochement, LAP LAMBERT Academic Publishing, Saarbrucken, Germany, 2016. https://doi.org/10.21821/2309-5180-2016-7-3-64-70.
  • [35] United Nations Economic Commission for Europe, White paper on Efficient and Sustainable Inland Water Transport in Europe. ECE/TRANS/SC.3/189. Inland Transport Committee Working Party on Inland Water Transport., (2011) 150–158.
  • [36] United Nations Economic Commission for Europe, Inventory of Main Standards and Parameters of the E Waterway Network, Geneva, 2013. https://doi.org/10.18356/56882178-en.
  • [37] A. Hesselbarth, D. Medina, R. Ziebold, M. Sandler, M. Hoppe, M. Uhlemann, Enabling Assistance Functions for the Safe Navigation of Inland Waterways, IEEE Intell. Transp. Syst. Mag. 12 (2020) 123–135. https://doi.org/10.1109/MITS.2020.2994103.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Identyfikator YADDA
bwmeta1.element.baztech-40347553-e69a-4760-971c-223b1b84ccfc