PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Finite Volume Method for the Combustion Reaction of Energetic Materials

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In order to analyse the effects of launch on the internal structure due to launch and given the relative paucity of experimental tests in this regime numerical simulations are an important method of prediction. Viscoelastic statistical crack mechanics offer a solution to the dynamic damage problems of explosives involved in explosion, impact and collision. Most finite element software does not include a viscoelastic statistical crack constitutive model; the model can only be embedded in the finite element software. Therefore, a computer program based on the finite volume method combined with viscoelastic statistical crack mechanics is presented, aiming to analyze the explosion problems more precisely and conveniently. A combustion equation of state is proposed to study the combustion reaction of explosives; the trends of temperature and stress of explosive during the combustion process are studied; Hot spot zones formed inside explosives are analyzed. The results are in accordance with the reaction law of combustion. The results indicate that when the bottom of the explosive charge is heated to a certain temperature, the explosive charge have a combustion reaction occurs. This conclusion has important value for studying the effect of the base gap on the launch safety of explosive munitions.
Rocznik
Strony
159--199
Opis fizyczny
Bibliogr. 40 poz., rys., tab., wykr.
Twórcy
autor
  • School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, China
autor
  • School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, China
autor
  • School of Astronautics and Architectural Engineering, Harbin Engineering University, Harbin, 150001, China
autor
  • School of Astronautics and Architectural Engineering, Harbin Engineering University, Harbin, 150001, China
autor
  • School of Astronautics and Architectural Engineering, Harbin Engineering University, Harbin, 150001, China
Bibliografia
  • [1] Liu, Y. Experimental Study and Numerical Simulation on Mechanical Behavior of Polymer-Bonded Explosives. PhD. thesis, Beijing Institute of Technology, Beijing, 2018.
  • [2] Zhang, M.; Zhang, C.; Ruan, W. Impact Initiation Experiment and Numerical Simulation of Charge of Armor-piercing Explosive Projectile. J. Ballist. 2020, 32(3): 9-13.
  • [3] Guo, C.; Guo, S.; Qian, J. Numerical Simulation on Shock Critical Initiation Velocity of Cylindrical Covered Charge by Multiple Fragment Impacts. Combust. Explos. Shock Waves 2020, 40(6): paper 062301.
  • [4] Fan, Y.; Wang, J.; Xie, Q. Experimental and Numerical Simulation Study on the Shaped Charge Jet Impact of a Fuze. J. Vibration Shock 2020, 39(22): 261-267.
  • [5] Liu, R.; Han, Y.; Dai, X. Numerical Simulation on the Influence of the Initial Crack on Polymer Bonded Explosive Ignition Under Low Velocity Impact. (in Chinese) Chin. J. Energ. Mater. 2019, 27(10): 812-818.
  • [6] Ren, H.; Li, W.; Ning, J. Effect of Temperature on the Impact Ignition Behavior of the Aluminum/Polytetrafluoroethylene Reactive Material Under Multiple Pulse Loading. Mater. Des. 2020, 189: paper 108522; DOI: 10.1016/j.matdes.2020.108522.
  • [7] Ren, H.; Li. W.; Ning, J.; Liu, Y. The Influence of Initial Defects on Impact Ignition of Aluminum/Polytetrafluoroethylene Reactive Material. Adv. Eng. Mater. 2020, 22(3): paper 1900821; DOI: 10.1002/adem.201900821.
  • [8] Hanina, E.; Partom, Y.; Havazelet, D.; Sadot, O. Prediction of Low-velocity-Impact Ignition Threshold of Energetic Materials by Shear-band Mesoscale Simulations. J. Energ. Mater. 2018, 36(3): 325-338; DOI: 10.1080/07370652.2017.1421726.
  • [9] Dai, X.; Wen, Y.; Wen, M.; Huang, F.; Li, M.; Deng, C. Projectile Impact Ignition and Reaction Violent Mechanism for HMX‐Based Polymer Bonded Explosives at High Temperature. Propellants Explos. Pyrotech. 2017, 42(7): 799-808; DOI: 10.1002/prep.201600130.
  • [10] Li, S.; Duan, Z.; Zhang, Z.; Ou, Z.; Huang, F. Numerical Simulation on Shock Initiation of Aluminized Melt-Cast Explosives. (in Chinese) Acta Armamentarii 2020, 41(S2): 211-217.
  • [11] Dienes, J.K.; Kershner, J.D. Multiple-Shock Initiation via Statistical Crack Mechanics. Proc. 11th Int. Detonation Symp., Snowmass, US, 1998, 717-724.
  • [12] Dienes, J.K.; Zuo, Q.H.; Kershner, J.D. Impact Initiation of Explosives and Propellants via Statistical Crack Mechanics. J. Mech. Phys. Solids 2006, 54(6): 1237-1275; DOI: 10.1016/j.jmps.2005.12.001.
  • [13] Addessio, F.L.; Johnson, J.N. A Constitutive Model for the Dynamic Response of Brittle Materials. J. Appl. Phys. 1990, 67(7): 3275-3286; DOI: 10.1063/1.346090.
  • [14] Bonnett, D.L.; Butler, P.B. Hot-Spot Ignition of Condensed Phase Energetic Materials. J. Propul. Power 1996, 12(4): 680-690; DOI: 10.2514/3.24089.
  • [15] Bai, Z.-L.; Duan, Z.-P.; Wen, L.-J.; Zhang, Z.-Y.; Ou, Z.-C.; Huang, F.-L. A Modified Mesoscopic Reaction Rate Model for Shock Initiation of PBX. (in Chinese) Chin. J. Energ. Mater. 2019, 27(8): 629-635; DOI: 10.11943/CJEM2018354.
  • [16] Huang, K. Numerical Study on Shock Initiation and Detonation of PBX Explosive. PhD thesis, Institute of Applied Physics and Computational Mathematics, Beijing, 2020.
  • [17] Zhang, Y.-G.; Lou, J.-F.; Zhou, T.-T.; Hong, T.; Zhang, S.-D. Initial Study on Constitutive Model of PBXs via Viscoelastic Statistical Crack Mechanics Including Anisotropic Damage. (in Chinese) Chin. J. High Pressure Phys. 2016, 30(4): 301-310; DOI: 10.11858/gywlxb.2016.04.006.
  • [18] Yang, K.; Wu, Y.-Q.; Jin, P.-G.; Huang, F. Damage‑Ignition Simulation for Typical Pressed and Casted PBX under Crack‑extruded Loading. (in Chinese) Chin. J. Energ. Mater. 2020, 28(10): 975-983; DOI: 10.11943/CJEM2020170.
  • [19] Tang, M.-F.; Gan, H.-X.; Wen, M.-P.; Wang, S.-N. Simulation and Experimental Study on the Thermal Shock Behavior of Notched PBX Cylinders. (in Chinese) Chin. J. Energ. Mater. 2021, 29(1): 41-47; DOI: 10.11943/CJEM2019237.
  • [20] Zhang, Q.-L.; Duan, Z.-P.; Meng, F.-X.; Nan, H.; Wang, X.-J.; Huang, F.-L. Experiments and Numerical Simulations of Penetration Stability of Cast Charge PBX-1. (in Chinese) Chin. J. Energ. Mater. 2021, 29(2): 107-113; DOI: 10.11943/CJEM2020203.
  • [21] Li, X. Investigations on Damage and Initiation Mechanism of PBX Charge During Penetration. PhD thesis, Harbin Institute of Technology, Harbin, 2020.
  • [22] Zhang, Z.; Wu, Y.-Q. Effect of Sugar Particles on Non‑Shock Ignition of Two Kinds of Single Compounds HMX and RDX. (in Chinese) Chin. J. Energ. Mater. 2019, 27(10): 805-811; DOI: 10.11943/CJEM2018360.
  • [23] Qin, J. Experimental Investigation and Numerical Modelling of non-Shock Ignition Mechanism in PBX Explosives. PhD thesis, Graduate School of National University of Defense Technology, Changsha, 2014.
  • [24] Dienes, J.K.; Middleditch, J.; Kershner, J.D.; Zuo, O.; Starobin, A. Progress in Statistical Crack Mechanics: An Approach to Initiation. Proc. 12th Symp. Int. on Detonation, Annapolis, US, 2002, 793-799.
  • [25] Sun, H. Study on Temperature Fluctuation and Damage Evolution of Polymer Bonded Explosive under Emission and Penetration Conditions. MSc. dissertation, Nanjing University of Science and Technology, Nanjing, 2018.
  • [26] Zhang, Y.; Lou, J.; Hong, T. Modification of Visco Statistical Crack Mechanics for PBX. (in Chinese) Chin. J. High Pressure Phys. 2015, 29(1): 9-14.
  • [27] Yang, S.; Liu, F.; Feng, L.; Turner, I. A Novel Finite Volume Method for the Nonlinear Two-Sided Space Distributed-Order Diffusion Equation with Variable Coefficients. J. Comput. Appl. Mathematics 2021, 388: paper 113337; DOI: 10.1016/j.cam.2020.113337.
  • [28] Liu, H.; Zheng, X.; Fu, H.; Wang, H. Analysis and Efficient Implementation of Alternating Direction Implicit Finite Volume Method for Riesz Space‐Fractional Diffusion Equations in Two Space Dimensions. Numer. Methods Partial Differential Eq. 2020, 37(1): 818-835; DOI: 10.1002/num.22554.
  • [29] Mohammadi, M.; Vakilipour, S.; Ormiston, S. Newton Linearization of the NavierStokes Equations for Flow Computations Using a Fully Coupled Finite Volume Method. Appl. Mathematics Comput. 2021, 397: paper 125916; DOI: 10.1016/j.amc.2020.125916.
  • [30] Berberich, J.P.; Chandrashekar, P.; Klingenberg, C. High Order well-balanced Finite Volume Methods for multi-Dimensional Systems of Hyperbolic Balance Laws. Comput. Fluids 2021, 219: paper 104858: DOI: 10.1016/j.compfluid.2021.104858.
  • [31] Fatahillah, A.; Setiawan, T.B.; Sholihin, A. Numerical Analysis of Ice Freezing Processes of Block Ice Production in a Brine Tank Factory Using the Finite Volume Method. J. Phys.: Conf. Ser. 2021, 1832: paper 012023; DOI: 10.1088/1742-6596/1832/1/012023.
  • [32] Zhang, S.; Khoo, B.C.; Zhang, A.M. Study of Three-Dimensional Air Gun Bubble Pulsation and the Surrounding Fluid Pressure with Finite Volume Method. Ocean Eng. 2021, 221(1): paper 108500; DOI: 10.1016/j.oceaneng.2020.108500.
  • [33] Liu, B.; Lu, W. Surrogate Models in Machine Learning for Computational Stochastic multi-Scale Modelling in Composite Materials Design. Int. J. Hydromechatronics 2022, 5(4): 336-365; DOI: 10.1504/ijhm.2022.127037.
  • [34] Liu, B.; Nam, V.-B.; Zhuang, X.; Fu, X.; Rabczuk, T. Stochastic full-Range Multiscale Modeling of Thermal Conductivity of Polymeric Carbon Nanotubes Composites: A Machine Learning Approach. Compos. Struct. 2022, 289(1): paper 115393; DOI: 10.1016/j.compstruct.2022.115393.
  • [35] Yu, Y. Study on Finite Volume Method for Dynamic Response of Thin Plate Structure. M.Sc. dissertation, Harbin Engineering University, Harbin, 2011.
  • [36] Dienes, J.K.; Kershner, J.D. Crack Dynamics and Explosive Burn via Generalized Coordinates. J. Comput.-Aided Mater. Des. 2000, 7(3): 217-237; DOI: 10.1023/A:1011874909560.
  • [37] Zhao, S. A Viscoelastic Statistic Crack Constitutive Model for Mechanical Response and the non-Shock Ignition of High Explosives. M.Sc. dissertation, National University of Defense Technology, Harbin, 2011.
  • [38] Bennett, J.G.; Haberman, K.S.; Johnson, J.N.; Asay, B.W. A Constitutive Model for the non-Shock Ignition and Mechanical Response of High Explosives. J. Mech. Phys. Solids 1998, 46(12): 2303-2322; DOI: 10.1016/S0022-5096(98)00011-8.
  • [39] Sun, B.; Duan, Z.; Wan, J. Investigation on Ignition of an Explosive Charge in a Projectile During Penetration Based on Visco-SCRAM Model. Explos. Shock Waves 2015, 35(5): 689-695.
  • [40] Volk, F.; Bathelt, H. Application of the Virial Equation of State in Calculating Interior Ballistics Quantities. Propellants Explos. 1976, 1(1): 7-14; DOI: 10.1002/prep.19760010104.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-402e622f-6ad5-4026-945f-9905a537f27b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.