PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Physical simulation of thermomechanical processing of new generation advanced high strength steels

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Symulacja fizyczna obróbki cieplno - plastycznj nowej generacji stali wysokowytrzymałych
Języki publikacji
EN
Abstrakty
EN
The scientific aim of the paper is the comparative analysis of the hot-working behaviour and microstructure evolution of thermomechanically processed and controlled cooled three advanced high-strength steels (AHSS) used in the automotive industry. The hot workability of three selected steel grades with a various content of Mn and C being major austenite-forming elements was compared. Evaluation of the resistance for hot deformation was carried out on a basis of continuous compression, double-hit compression, four-step compression and seven-step compression experiments simulating conditions similar to industrial processes. It was found that the hot workability of the new generation of AHSS is very challenging due to high values of flow stresses required. However, it is possible to obtain fine-grained transformation products of supercooled austenite with a high volume fraction of retained austenite for low-alloyed steels or single-phase austenitic microstructure in the high-manganese steel. Thermally activated processes of microstructure restoration which enable for successive grain refinement and affecting final flow stress values were identified. Finally, the comparison of the microstructures characterizing the first, second and third generation of AHSS was carried out. Some similarities and differences concerning the hot deformation behaviour and microstructure detailes are indicated.
PL
Celem naukowym pracy jest analiza porównawcza obróbki plastycznej na gorąco i rozwoju mikrostruktury obrobionych cieplno-plastycznie oraz chłodzonych w kontrolowanych warunkach trzech wysokowytrzymałych stali stosowanych w motoryzacji (AHSS). Przedstawiono porównanie odkształcalności na gorąco 3 wybranych gatunków stali o zróżnicowanej zawartości Mn i C, będących głównymi pierwiastkami austenitotwórczymi. Oceny oporu kształtowania plastycznego dokonano na podstawie prób ściskania ciągłego, ściskania dwuetapowego, cztero-etapowego oraz siedmioetapowego symulującego warunki zbliżone do procesów przemysłowych. Stwierdzono, że odkształcalność na gorąco nowej generacji stali AHSS wymaga zastosowania dużej wartości naprężeń uplastyczniających. Możliwe jest jednak uzyskanie drobnoziarnistych produktów przemiany austenitu przechłodzonego o dużym udziale austenitu szczątkowego w stalach niskostopowych lub jednorodnej strukturze austenitycznej w stali wysokomanganowej. Dokonano identyfikacji aktywowanych cieplnie procesów odbudowy mikrostruktury austenitu pozwalających na sukcesywne jego rozdrobnienie oraz decydujących o końcowej wartości naprężenia płynięcia. Porównano uzyskane mikrostruktury stali charakteryzujące pierwszą, drugą i trzecią generację stali AHSS. Wskazano podobieństwa i różnice dotyczące odkształcalności stali na gorąco oraz szczegółów mikrostrukturalnych.
Wydawca
Rocznik
Strony
115--129
Opis fizyczny
Bibliogr. 40 poz., rys.
Twórcy
autor
  • Silesian University of Technology, Institute of Engineering Materials and Biomaterials, Gliwice, Poland
autor
  • Institute for Ferrous Metallurgy, Gliwice, Poland
autor
  • Silesian University of Technology, Institute of Engineering Materials and Biomaterials, Gliwice, Poland
autor
  • Silesian University of Technology, Institute of Engineering Materials and Biomaterials, Gliwice, Poland
Bibliografia
  • Adamczyk, J., Grajcar, A., 2007, Heat treatment and mechanical properties of low-carbon steel with dual-phase micro-structure, Journal of Achievements in Materials and Manufacturing Engineering, 22, 13-20.
  • Bleck, W., Phiu-On, K., 2005, Microalloying of cold-formable multi phase steel grades, Materials Science Forum, 500-501,97-112.
  • Cabanas, N., Akdut, N., Penning, J., De Cooman, B.C., 2006, High-temperature deformation properties of austenitic Fe-Mn alloys, Metallurgical and Materials Transactions A, 37A, 3305-3314.
  • Dobrzański, L.A., Borek, W., 2012, Thermo-mechanical treatment of Fe-Mn-(Al,Si) TRIP/TWIP steels, Archives of Civil and Mechanical Engineering, 12, 299-304.
  • Dobrzański, L.A., Grajcar, A., Borek, W., 2009, Processes forming the microstructure evolution of high-manganese austenitic steel in hot-working conditions, Journal of Achievements in Materials and Manufacturing Engineering, 37, 9-19.
  • Eberle, K., Cantinieaux, P., Harlet, P., 1999, New thermome-chanical strategies for the production of high strength low alloyed multiphase steel showing a transformation induced plasticity (TRIP) effect, Steel Research, 70, 233-238.
  • Ehrhardt, B., Gerber, T., 2004, Property related design of advanced cold rolled steels with induced plasticity, Steel Grips, 4, 247-255.
  • Fazeli, F., Militzer, M., 2012, Modelling simultaneous formation of bainitic ferrite and carbide in TRIP steels, ISIJ International, 52, 650-658.
  • Frommeyer, G., Bruex, U., 2006, Microstructures and mechanical properties of high-strength Fe-Mn-Al-C light-weight TRIPLEX steels, Steel Research International, 11, 627-633.
  • Grajcar, A., 2007a, Determination of the stability of retained austenite in TRIP-aided bainitic steel, Journal of Achievements in Materials and Manufacturing Engineerings, 111-114.
  • Grajcar, A., 2007b, Effect of hot-working in the γ+a range on a retained austenite fraction in TRIP-aided steel, Journal of Achievements in Materials and Manufacturing Engineering, 22, 79-82.
  • Grajcar, A., 2012, Segregation behaviour of third generation advanced high-strength Mn-Al steels, Archives of Foundry Engineering, 24, 123-128.
  • Grajcar, A., Kuziak, R., Zalecki, W., 2012, Third generation of AHSS with increased fraction of retained austenite for the automotive industry, Archives of Civil and Mechani¬cal Engineering, 12, 334-341.
  • Grajcar, A., Opiela, M., Fojt-Dymara, G., 2009, The influence of hot-working conditions on a structure of high-manganese steel, Archives of Civil and Mechanical Engineering, 9, 49-58.
  • Gronostajski, Z., Niechajowicz, A., Polak, S., 2010, Prospects for the use of new-generation steels of the AHSS type for collision energy absorbing components, Archives of Metallurgy and Materials, 55, 221-230.
  • Hadasik, E., Kuziak, R., Kawalla, R., Adamczyk, M., Pietrzyk. M., 2006, Rheological model for simulation of hot roll¬ing of new generation steel strip for automotive industry. Steel Research International, 11, 927-933.
  • Hamada, A.S., Somani, M.Ch., Karjalainen, L.P., 2007, Higfc temperature flow stress and recrystallization behavior high-Mn TWIP steels, ISIJ International, 47, 907-912.
  • Koistinen, D.P., Marburger, R.E., 1959, A general equation prescribing extent of austenite-martensite transformation in pure Fe-C alloys and plain carbon steels, Acta Metallurgica, 1, 59-60.
  • Kuc, D., Gawąd, J., 2011, Modelling of microstructure char.» during hot deformation using cellular automata, Archives of Metallurgy and Materials, 56, 523-532.
  • Kuziak, R., 2005, Modelling of structure and phase transformation changes occurring during thermomechanical processing of steel, Instytut Metalurgii Żelaza, Gliwice (in polish).
  • Kuziak, R., 2005, Modelling of structure and phase transformation changes occurring during thermomechanical processing of steel, Instytut Metalurgii Żelaza, Gliwice (in polish).
  • Kuziak, R., Kawalla, R, Waengler, S., 2008, Advanced high strength steels for automotive industry, Archives of Civil and Mechanical Engineering, 8, 103-118.
  • Kuziak, R., Molenda, R., Radwański, K., 2011, Modelling of phase transformations during annealing of DP steel sheets using Thermocalc and Dictra software, Prace IMŻ, 3, 7-20 (in Polish).
  • Kuziak, R., Pietrzyk, M., 2011, Physical and numerical simulation of the manufacturing chain for the DP steel strips, Steel Research International, Special Edition: Technolo¬gy of Plasticity, 756-761.
  • Liu, D., Fazeli, F., Militzcr, M., Poole, W.J., 2007, A micro-structure evolution for hot rolling of a Mo-TRIP steel, Metallurgical and Materials Transactions A, 38A, 894-909.
  • Majta, J., Kuziak, R., Pietrzyk, M., 1998, Modelling of the influence of thermomechanical processing of Nb-microalloyed steel on the resulting mechanical properties, Journal of Materials Processing Technology, 80-81, 524-530.
  • Militzer, M., 2000, Modelling of microstructure evolution and properties of low-carbon steels, Acta Metallurgica Sinica, 13, 574-580.
  • Militzer, M., 2007, Computer simulation of microstructure evolution in low carbon sheet steels, ISIJ International, 47, 1-15.
  • Militzer, M., Hawbolt, E.B., Mcadowcroft, T.R., 2000, Microstructural model for hot strip rolling of high-strength low-alloy steels, Metallurgical and Materials Transactions A, 31 A, 1247-1259.
  • Molenda, R., Kuziak, R., Pidvysotsk'yy, V., 2010, Physical simulation and mathematical modeling of rolling and continuous annealing of DP strips, Prace IMZ, 1, 136-141 (in Polish).
  • Niżnik, B., Pietrzyk, M., 2011, Model of phase transformation for niobium microalloyed steels, Archives of Metallurgy and Materials, 56, 731-742.
  • Opiela, M., Grajcar, A., Krukiewicz, W., 2009, Corrosion behaviour of Fe-Mn-Si-Al austenitic steel in chloride solution, Journal of Achievements in Materials and Manufacturing Engineering, 33, 159-165.
  • Pietrzyk, M., Madej, Ł., Rauch, Ł., Gołąb, R., 2010, Multiscale modelling of microstructure evolution during laminar cooling of hot rolled DP steel, Archives of Civil and Me¬chanical Engineering, 10, 51-61.
  • Poliak, E.I., Siciliano, F., 2004, Hot deformation behavior of Mn-Al and Mn-Al-Nb steels, Conf. Proc. MS&T2004, New Orleans, USA, AIST, 39-45.
  • Siodlak, D., Lotter, U., Kawalla, R., Schwich, V., 2008, Modelling of the mechanical properties of low alloyed multi-phase steels with retained austenite taking into account strain-induced transformation, Steel Research International, 19, 776-783. .
  • Skolly, R.M., Poliak, E.I.. 2005, Aspects of production hot rolling of Nb microalloyed high Al high strength steels, Materials Science Forum, 500-501, 187-194.
  • Speer. J.G., De Moor, E., Findley, K.O., Matlock, D.K., De Cooman, B.C., Edmonds, D.V., 2011, Analysis of microstructure evolution in quenching and partitioning automotive sheet steel, Metallurgical and Materials Transactions A, 42A, 3591-3601.
  • Suwanpinij, P., Prahl, U., Bleck, W., Kawalla, R., 2012, Fast algorithms for phase transformations in dual phase steels on a hot strip mill run-out table (ROT), Archives of Civil and Mechanical Engineering, 12, 305-311.
  • Thomas, G.A., Speer, J.G, Matlock, D.K., 2011, Quenched and partitioned microstructures produced via Gleeble simulations of hot-strip mill cooling practices, Metallurgical and Materials Transactions A, 42A, 3652-3659.
  • Uranga, P., Lopez, B., Rodriguez-Ibabe, J.M., 2007, Microstruc-tural modeling of Nb microalloyed steels during thin slab direct rolling processing, Steel Research International, 78, 199-209.
  • Zajac, S., Schwinn, V., Tacke, K.H., 2005, Characterisation and quantification of complex bainitic microstructures in high strength coated sheet steels, Materials Science Forum, 500-501,387-394.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-402e2d24-cd9c-43fa-a4e9-88a845782476
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.