PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Cyanobacteria Dynamics in a Mediterranean Reservoir of the North East of Algeria: Vertical and Seasonal Variability

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Harmful cyanobacterial efflorescence is of growing global concern and its prediction and management require a better understanding of the growth control factors and dominance of cyanobacteria. The Zit-Emba reservoir located in the North-East of Algeria, was constructed to provide drinking water, irrigation, and fishing. The vertical and seasonal distribution variation of cyanobacteria community associated with environmental factors was comprehensively investigated from April 2016 to December 2016 at five depths, based on a seasonal sampling. The cyanobacteria communities of this reservoir are composed of seven genera belonging to five orders. The average proportion of Microcystis to total cyanobacteria population was 43%, followed by Woronichinia 21%, Planktothrix 16%, Dolichospermum 13%, Oscillatoria 5%, and the remainder (Merismopedia, Spirulina) 2%. The average cyanobacterial abundance was 2702 cells/mL, ranging from 360 to 65 795 cells/mL and this abundance exceeds the alert level 1 throughout the year. The most recurrent periods of increase took place from spring to summer and autumn. However, the vertical distributions of cyanobacteria displayed a similar profile each season, and abundances tended to decrease with depth. The results of the statistical analysis suggested that the most abundant of cyanobacterial genera were positively related to chlorophyll-a and water temperature and negatively with the concentrations of NO3-N, NH4-N, and NO2-N. This demonstration of toxigenic cyanobacteria in this drinking water production dam involves regular monitoring of the cyanobacterial communities and cyanotoxins in raw water.
Rocznik
Strony
93--107
Opis fizyczny
Bibliogr. 61 poz., rys., tab.
Twórcy
  • Ecobiology Laboratory for Marine Environments and Coastal Areas, Faculty of Sciences, BP 12 El-Hadjar, University of Badji Mokhtar, 23000 Annaba, Algeria
  • Ecobiology Laboratory for Marine Environments and Coastal Areas, Faculty of Sciences, BP 12 El-Hadjar, University of Badji Mokhtar, 23000 Annaba, Algeria
autor
  • Ecobiology Laboratory for Marine Environments and Coastal Areas, Faculty of Sciences, BP 12 El-Hadjar, University of Badji Mokhtar, 23000 Annaba, Algeria
  • Ecobiology Laboratory for Marine Environments and Coastal Areas, Faculty of Sciences, BP 12 El-Hadjar, University of Badji Mokhtar, 23000 Annaba, Algeria
Bibliografia
  • 1. Abrantes N., Antunes S.C., Pereira M.J., Goncalves F. 2006. Seasonal succession of cladocerans and phytoplankton and their interactions in a shallow eutrophic lake (Lake Vela, Portugal). Acta Oecologia, 29, 54–64.
  • 2. Afssa/Afsset. 2006. Évaluation des risques liés à la présence de cyanobactéries et de leurs toxines dans les eaux destinées à l’alimentation, à la baignade et autres activités récréatives. Rapport commun sur les risques sanitaires liés à la présence de cyanobactéries dans l’eau, p. 232. [In French]
  • 3. Aminot A., and Chaussepied M. 1983. Manuel des analyses chimiques en milieu marin. Cnexo. Brest. [In French]
  • 4. Belhadj M.Z. 2007. Etude de la pollution des eaux de surface du barrage de Zit El Emba. Région Est de Skikda. NE algérien. Mémoire de Magister, Dép Hydrau , Univ Batna. [In French]
  • 5. Bidi-Akli S., Hacene H., Arab A. 2017. Impact of abiotic factors on the spatio-temporal distribution of cyanobacteria in the Zeralda’s dam (Algeria).Revue d’Ecologie (la Terre et la Vie), 72(2), 159–167.
  • 6. Boussadia M.I., Sehli N., Bousbia A., Ouzrout R., Bensouilah M. 2015. The effect of environmental factors on cyanobacteria abundance in Oubeira lake (Northeast Algeria).Research Journal of Fisheries and Hydrobiology, 10(14), 157–168.
  • 7. Brient L., Lengronne M., Bertrand E., Rolland D., Sipel A., Steinmann D., Baudin I., Legeas M., Le Rouzic B., Bormans M. 2008. A phycocyanin probe as a tool for monitoring cyanobacteria in freshwater bodies. Journal of Environmental Monitoring, 10, 248–255.
  • 8. Carrasco D., Moreno E., Sanchis D., Wörmer L., Paniagua T., Del Cueto A., Quesada A. 2006. Cyanobacterial abundance and microcystin occurrence in Mediterranean water reservoirs in Central Spain: microcystins in the Madrid area. Eur. J. Phycol, 41, 281–291.
  • 9. Chorus I. 2001. Cyanotoxins: Occurrence, Causes, Consequences. Springer-Verlag KG, Berlin.
  • 10. Chorus I., and Bartram J. 1999. Toxic cyanobacteria in water: a guide to their public health consequences, monitoring and management. Geneva: World Health Organization 416 p.
  • 11. Codd G.A., Morrison L.F., Metcalf J.S. 2005. Cyanobacterial toxins: risk management for health protection.Toxicology and Applied Pharmacology, 203,264–272.
  • 12. Djabourabi A., Touati H., Sehili N., Boussadia M. I., Bensouilah M. 2017. Study of the physicochemical parameters of water and phytoplankton in Lake Tonga (wetland of the national park of El Kala, North East of Algeria), International Journal of Biosciences, 11(3), 213–226.
  • 13. Djabourabi A., Sehili N., Boussadia M., Samar F., Bensouilah M. 2014. Fluctuations des Paramètres Physico Chimiques et des Communautés Phytoplanctoniques dans le lac Oubeira (Nord-Est Algérien). European Journal of Scientific Research, 118(2), 183–196. [In French]
  • 14. Dokulil M.T., and Teubner K. 2000. Cyanobacterial dominance in lakes. Hydrobiologia, 4381–3, 1–12.
  • 15. Elliott J.A. 2012. Predicting the impact of changing nutrient load and temperature on the phytoplankton of England’s largest lake, Windermere. Freshwater Biol, 57, 400–413.
  • 16. Ferrão-Filho A.S., Soares M.C.S., de Freitas Magalhães V., Azevedo S.M.F.O. 2009. Biomonitoring of cyanotoxins in two tropical reservoirs by cladoceran toxicity bioassays. Ecotoxicol. Environ. Saf, 72, 479–489, http://dx.doi.org/10.1016/j.ecoenv.2008.02.002.
  • 17. Gachter R., and Muller B. 2003. Why the phosphorus retention of lakes does not necessarily depend on the oxygen supply to their sediment surface. Limnology and Oceanography, 48, 929–933.
  • 18. Ger K.A., Teh S.J., Baxa D.V., Lesmeister S., Goldman, C.R. (2010). The effects of dietary Microcystis aeruginosa and microcystin on the copepods of the upper San Francisco Estuary. Freshwater Biology, 55(7), 1548–1559.
  • 19. Guellati F.Z., Touati H., Tambosco K., Quiblier C., Humbert JF., Bensouilah M. 2017. Unusual cohabitation and competition between Planktothrix rubescens and Microcystissp. (cyanobacteria) in a subtropical reservoir (Hammam Debagh) located in Algeria. PloS one, 12(8), e0183540.
  • 20. Harke M.J., Steffen M.M., Gobler C.J., Otten T.G., Wilhelm S.W., Wood S.A., Paerl H.W. 2016. A review of the global ecology, genomics, and biogeography of the toxic cyanobacterium, Microcystis spp. Harmful Algae, 54, 4–20.
  • 21. Huber V., Wagner C., Gerten D., Adrian, R. 2012. To bloom or not to bloom: contrasting responses of cyanobacteria to recent heat waves explained by critical thresholds of abiotic drivers. Oecologia, 169,245–56.
  • 22. ISO/TC 147 (International Organization for Standardization) .1994. Environment: water quality. Chemical methods ISO Standards Compendium, Volume 2. 1st edition.
  • 23. Jacoby J.M., Kann J. 2007. The occurence and response to toxic cyanobacteria in the Pacific Northwest, North America. Lake Reservoir Management, 23(2), 123–143.
  • 24. Jeppesen E., Søndergaard M., Meerhoff M., Lauridsen T. L., Jensen J. P. 2007. Shallow lake restoration by nutrient loading reduction–some recent findings and challenges ahead. In Shallow Lakes in a Changing World, Springer, Dordrecht, pp. 239–252.
  • 25. Jia J., Luo W., Lu Y., Giesy J.P. 2014. Bioaccumulation of microcystins (MCs) in four fish species from Lake Taihu, China: assessment of risks to humans. Science of the Total Environment, 487, 224–232.
  • 26. Joung S.H., Oh H.M., Ko S.R., Ahn C.Y. 2011. Correlations between environmental factors and toxic and non-toxic Microcystis dynamics during bloom in Daechung Reservoir, Korea. Harmful Algae, 10,188–193.
  • 27. Komárek J., and Anagnostidis K. 1999. Cyanoprokaryota: Part 1: Chroococcales. SüBwasser flora von Mittelleuropa Freshwater Flora of Central Europe. Spektrum Akademischer Verlag Heidelberg, Germany.
  • 28. Komárek J., and Anagnostidis K. 2005.Cyanoprokaryota: part 2: Oscillatoriales SüBwasserflora von Mittelleuropa freshwater flora of Central Europe. Spektrum Akademischer Verlag Heidelberg. Germany.
  • 29. Komárek J., Kaštovský J., Mareš J., Johansen J.R. 2014. Taxonomic classification of cyanoprokaryotes (cyanobacterial genera) Taxonomic classification of cyanoprokaryotes (cyanobacterial genera) 2014, using a polyphasic approach. Preslia, 86, 295–33.
  • 30. Macário I.P.E, Castro B.B., Nunes M.I.S., Antunes S.C., Pizarro C., Coelho C., Gonçalves F., De Figueiredo D.R. 2015. New insights towards the establishment of phycocyanin concentration thresholds considering species-specific variability of bloom-forming cyanobacteria. Hydrobiologia, 757(1), 155–165.
  • 31. Marchetto A., Padedda B.M., Mariani M.A., Lugliè A., Sechi N. 2009. A numerical index for evaluating phytoplankton response to changes in nutrient levels in deep Mediterranean reservoirs. Journal of Limnology, 68(1), 106–121.
  • 32. Mariani M.A., Padedda B.M., Kaštovský J., Buscarinu P., Sechi, N., Virdis T., & Lugliè, A. 2015. Effects of trophic status on microcystin production and the dominance of cyanobacteria in the phytoplankton assemblage of Mediterranean reservoirs. Scientific reports, 5, 17964.
  • 33. McDonald K.E., and Lehman J.T. 2013. Dynamics of Aphanizomenon and Microcystis (cyanobacteria) during experimental manipulation of an urban impoundment. Lake and reservoir management, 29(2), 103–115.
  • 34. Mur L.R., Skulberg O.M., Utkilen H. 1999. Cyanobacteria in the environment. In Toxic cyanobacteria in water: A guide to their public health consequences, monitoring and management, eds. I. Chorus and J. Bartram, pp. 15–40. London: E & FN Spon.
  • 35. Nasri H., Bouchaïcha N., Harche M.K. 2007. A new morphospecies of Microcystis sp forming a bloom in the Cheffia dam (Algeria): seasonal variation of microcystin concentrations in raw water and their removal in a full scale treatment plant. Environmental Toxicology, 22(4), 347–356.
  • 36. Nasri H., El Herry S., Bouaicha N. 2008. First reported case of turtle deaths during a toxic Microcystis spp. bloom in Lake Ubeira, Algeria. Ecotoxicology and Environmental Safety, 71(2), 535–544.
  • 37. Nowicka-Krawczyk P., and Żelazna-Wieczorek J. 2017. Dynamics in cyanobacterial communities from a relatively stable environment in an urbanised area (ambient springs in Central Poland). Science of the Total Environment, 579, 420–429.
  • 38. Ouartsi A., Saoudi A., Chekireb D. 2011. Etude des efflorescences toxiques à cyanobactéries dans le barrage de Mexa, Algérie. Revue de Microbiologie Industrielle Sanitaire et Environnementale, 5(1), 81–100. [In French]
  • 39. Padedda B.M., Sechi N., Lai G.G., Mariani M.A., Pulina S., Sarria M., Satta C.T., Virdis T., Buscarinu P., Lugl A. 2017. Consequences of eutrophication in the management of water resources in Mediterranean reservoirs: A case study of Lake Cedrino (Sardinia, Italy). Global Ecology and Conservation, 12, 21–35.
  • 40. Paerl H. 2008. Nutrient and other environmental controls of harmful cyanobacterial blooms along the freshwater–marine continuum. Cyanobacterial harmful algal blooms. State Sci. Res. Needs, 217–237.
  • 41. Paerl H.W., and Huisman J. 2008. Climate. Blooms like it hot.Science, 320(5872), 57–58.
  • 42. Paerl H.W., and Fulton R.S. 2006. III. Ecology of harmful cyanobacteria. In Ecology of Harmful Algae; Graneli, E., Turner, J., Eds., Springer, Berlin, Germany, pp. 95–109.
  • 43. Pajares S., Merino-Ibarra M., Macek M., Alcocer J. 2017. Vertical and seasonal distribution of picoplankton and functional nitrogen genes in a high-altitude warm-monomictic tropical lake. Freshwater Biol, 00, 1–14. https://doi.org/10.1111/fwb.12935.
  • 44. Parsons T. R. 1966. Determination of photosynthetic pigments in sea-water. A survey of methods. Monogr. Oceanogr. Method, 1, 21–31.
  • 45. Pobel D., Robin, J., Humbert J.F. 2011. Influence of sampling strategies on the monitoring of cyanobacteria in shallow lakes: Lessons from a case study in France. Water research, 45(3), 1005–1014.
  • 46. Quiblier C., Leboulanger C., Sané S., Dufour P. 2008. Phytoplankton growth control and risk of cyanobacterial blooms in the lower Senegal River delta region. Water research, 42(4–5), 1023–1034.
  • 47. Renaud S.L.B., Pick F.R., Fortin N. 2011. Effect of light intensity on the relative dominance of toxigenic and nontoxigenic strains of Microcystis aeruginosa. Applied and environmental microbiology, AEM-05246.
  • 48. Reynolds C.S., Oliver, R.L., Anthony E., Walsby. 1987. Cyanobacterial dominance: The role of buoyancy regulation in dynamic lake environments. New Zealand journal of marine and freshwater research, 21(3), 379–390.
  • 49. Sánchez-Carrillo S., Alatorre L. C., Sánchez-Andrés R., Garatuza-Payán J. 2007. Eutrophication and sedimentation patterns in complete exploitation of water resources scenarios: an example from northwestern semi-arid Mexico. Environmental Monitoring and Assessment, 132, 377–393.
  • 50. Saoudi A., Brient L., Boucetta S., Ouzrout R., Bormans M., Bensouilah M. 2017. Management of toxic cyanobacteria for drinking water production of Ain ZadaDam. Environnemental Monitoring and Assessment, 189(7),361.
  • 51. Saoudi A., Barour C., Brient L., Ouzrout R., Bensouilah M. 2015. Environmental parameters and spatio-temporal dynamics of cyanobacteria in the reservoir of Mexa (Extreme North-East of Algeria).Advances in Environmental Biology, 9(11), 109–121.
  • 52. Soares M.C.S., Marinho M.M., Azevedo S.M., Branco C.W., Huszar V.L. 2012. Eutrophication and retention time affecting spatial heterogeneity in a tropical reservoir. Limnologica-Ecology and Management of Inland Waters, 42(3), 197–203.
  • 53. Stefanelli M., Scardala S., Cabras P.A., Orrù A., Vichi S., Testai E., Funari E., Manganelli M. 2017. Cyanobacterial dynamics and toxins concentrations in Lake Alto Flumendosa, Sardinia, Italy. Advances in Oceanography and Limnology, 8(1), DOI: 10.4081/aiol.2017.6352.
  • 54. Thomas M.K. and Litchman E. 2016. Effects of temperature and nitrogen availability on the growth of invasive and native cyanobacteria. Hydrobiologia, January 2016, Volume 763, Issue 1, pp 357–369.
  • 55. Van Wichelen J., Vanormelingen P., Codd, G.A., Vyverman W. 2016. The common bloom-forming cyanobacterium Microcystis is prone to a wide array of microbial antagonists. Harmful algae, 55, 97–111.
  • 56. Vollenweider R.A. and Kerekes J. 1982. Eutrophication of Waters. Monitoring, Assessment and Control. OECD Cooperative Programme on Monitoring of Inland Waters (Eutrophication Control). Environment Directorate, OECD, Paris, 154 pp.
  • 57. Walsby A. E., Booker M. J. 1980. Changes in buoyancy of a planktonic blue-green alga in response to light intensity. British Phycol. J, 15,311–319.
  • 58. Walsby A., Schanz F., Schmid M. 2005. The Burgundy-blood phenomenon: a model of buoyancy change explains autumnal water blooms by Planktothrix rubescens in Lake Zurich. New Phytol, 169 (1), 109–122.
  • 59. Whitton B.A., and Potts M. 2000. Introduction to the cyanobacteria. In: Whitton B.A and Potts M (eds) Ecology of cyanobacteria: their diversity in time and space. Kluwer Academic Publishers, Dordrecht, pp 1–11, 689 pp.
  • 60. Wilk-Wozniak E. 1996. Changes in the biomass and structure of phytoplankton in the Dobczyce Reservoir [Southern Poland]. Acta Hydrobiologica, 3(38).
  • 61. Wu W. J., Li G. B., Li D. H., Liu Y. D. 2010. Temperature may be the dominating factor on the alternant succession of Aphanizomenon flos-aquae and Microcystis aeruginosa in Dianchi Lake. Fresenius Environ Bull, 19(5), 846–853.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-40286cf5-05d2-4cf6-bbd9-04520cec487f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.