Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In the design of structures, joint design significantly influences aesthetics, structural performance, tectonics, and member geometry. In this study, a Y-shaped, polyhedral cantilever with fixed joints was transformed into five different trussed configurations using universal joints. Enabled by 3D-printed plug-in joints, a full-scale trussed cantilever was repeatedly (dis-)assembled. Graphic statics principles drastically simplified the branch count and design. Beyond its structural significance, joint articulation impacts element/connector count, required cross-sections i.e. material mass and associated sustainability, and visual appeal/aesthetics. By comparing results obtained from computational and physical methods, including Karamba3D, load tests, terrestrial laser scanning the prototype’s unloaded and loaded states, and the associated mathematical quantities, this paper draws conclusions on (i) structural performance, (ii) material consumption, and (iii) complexity and architectural aesthetics. Presented research integrates architectural and structural design, teaching, hands-on experience and testing on digital and physical levels, offering insights for efficient construction, sustainable practices, modularity, and advanced manufacturing.
Czasopismo
Rocznik
Tom
Strony
113--128
Opis fizyczny
Bibliogr. 30 poz.
Twórcy
autor
- Univ. Prof. Dipl. Ing. Dr. techn. M. Eng.; University of Innsbruck, Faculty of Architecture, Lightweight Structures Unit (LSU), 6020 Innsbruck, Austria
autor
- Dipl.-Ing. Dr.; University of Innsbruck, Faculty of Engineering Sciences, Engineering Mathematics, 6020 Innsbruck, Austria
autor
- Univ. Prof. Dipl. Ing. Dr. techn. M. Eng.; University of Innsbruck, Faculty of Architecture, Lightweight Structures Unit (LSU), 6020 Innsbruck, Austria
autor
- Dipl.-Ing. Dr.; University of Innsbruck, Faculty of Engineering Sciences, Geometry and Surveying, 6020 Innsbruck, Austria
Bibliografia
- [1] Allen, E., & Zalewski, W. (2010). Form and Forces: Designing efficient, expressive structures. Wiley.
- [2] Bendsøe, M. P., & Sigmund, O. (2003). Topology optimization: Theory, methods and applications. Engineering online library. Springer. https://doi.org/30512
- [3] Burkhalter, M., & Sumi, C. (Eds.). (2018). Konrad Wachsmann and the grapevine structure (1. Auflage). Park Books. https://permalink.obvsg.at/AC15072451
- [4] Calvino, I. (1995). Gesammelter Sand: Essays (B. Kroeber, Trans.). Hanser.
- [5] Deo, S., Hölttä-Otto, K., & Filz, G. H. (2020). Creativity and Engineering Education: Assessing the Impact of a Multidisciplinary Project Course on Engineering Students’ Creativity. In American Society of Mechanical Engineers (Ed.), Proceedings of the ASME International Design Engineering Technical Conferences & Computers and Information in Engineering Conference - 2020: Volume 3: 17th International Conference on Design Education (DEC). Diversity and Inclusion in Design Education. the American Society of Mechanical Engineers; Curran Associates Inc. https://doi.org/10.1115/DETC2020-22250
- [6] DETAIL Architecture GmbH. (2021). 60 Jahre Architektur: Patrik Schumacher über das Detaillieren. 60 Years DETAIL. https://www.detail.de/de_de/60-jahre-architektur-patrik-schumacher-ueber-das-detaillieren
- [7] Elmas, S., Filz, G. H., & Markou, A. A. (2022). An ephemeral, kinematic pavilion in the light of assembly/disassembly and material use/reuse. In G. H. Filz, P. Savolainen, & J. Lilius (Eds.), Architectural Research in Finland: ARF 2022 (Vol. 6, pp. 131-145). https://doi.org/10.37457/arf.130446
- [8] Engel, H. (1977). Tragsysteme: = Structure systems (4. Auflage). Deutsche Verlags-Anstalt.
- [9] Erzen, J. N., & Emden, C. (2024). Carlo Scarpa: The complete buildings (E. Bugatti, Ed.). Prestel.
- [10] Eschenauer, H. A., & Olhoff, N. (2001). Topology optimization of continuum structures: A review Applied Mechanics Reviews, 54(4), 331-390. https://doi.org/10.1115/1.1388075
- [11] Extrudr | FD3D GmbH. (2024, June 12). Extrudr - High quality filaments for 3D printing. https://www.extrudr.com
- [12] Filz, G. H. (2013). Low-tech or high-tech? “cut.enoid.tower” - Three times two facets of irregularity. In K.-U. Bletzinger, B. Kröplin, & E. Oñate (Eds.), 6th International Conference on Textile Composites and Inflatable Structures, Structural Membranes 2013 (pp. 250-257). International Center for Numerical Methods in Engineering (CIMNE). http://www.scopus.com/inward/record.url?scp=84891273541&partnerID=8YFLogxK
- [13] Helmcke, J. G. (Ed.). (1990). Mitteilungen des Instituts für Leichte Flächentragwerke (IL): Vol. 33. Radiolarien: = Radiolaria. Krämer.
- [14] Kobayashi, M. H. (2010). On a biologically inspired topology optimization method. Communications in Nonlinear Science and Numerical Simulation, 15(3), 787-802. https://doi.org/10.1016/j.cnsns.2009.04.014
- [15] Lafuente Hernández, E., Sechelmann, S., Rörig, T., & Gengnagel, C. (2013). Topology Optimisation of Regular and Irregular Elastic Gridshells by Means of a Non-linear Variational Method. In L. Hesselgren, S. Sharma, J. Wallner, N. Baldassini, P. Bompas, & J. Raynaud (Eds.), Advances in Architectural Geometry 2012 (pp. 147-160). Springer Vienna. https://doi.org/10.1007/978-3-7091-1251-9_11
- [16] Markou, A. A., Elmas, S., & Filz, G. H. (2021). Revisiting Stewart-Gough platform applications: A kinematic pavilion. Engineering Structures, 249, 113304. https://doi.org/10.1016/j.engstruct.2021.113304
- [17] Mattheck, C. (2010). Denkwerkzeuge nach der Natur (1., unveränd. Nachdr). Karlsruher Inst. für Technologie Campus Nord.
- [18] McNeel, R., & Associates. (2022). Rhinoceros 3D [Computer software]. https://www.rhino3d.com/
- [19] Michell, A. (1904). LVIII. The limits of economy of material in frame-structures. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 8(47), 589-597. https://doi.org/10.1080/14786440409463229
- [20] Morales-Beltran, M., Selamoğlu, B., Çetin, K., Özdemir, H. A., & Özbey, F. (2022). Exploring 3D printing techniques for the hybrid fabrication of discrete topology optimized structures. International Journal of Architectural Computing, 20(2), 400-419. https://doi.org/10.1177/14780771211039084
- [21] Moravánszky, Á. (2021). Knoten und Verbindungen. In proHolz Austria (Ed.), Zuschnitt (Vol. 81). https://www.proholz.at/zuschnitt/81/essay
- [22] Preisinger, C. (2022). Karamba3D [Computer software]. https://www.karamba3d.com/
- [23] Prusa, J. (2024, June 12). Prusa3D. https://www.prusa3d.com
- [24] Ruan, G., Filz, G. H., & Fink, G. (2021). An integrated architectural and structural design concept by using local, salvaged timber. In S. A. Behnejad, G. A. R. Parke, & O. Samavati (Eds.), Iass 2020/21 Annual Symposium of the International Association for Shell and Spatial Structures and the 7th International Conference on Spatial Structures: Inspiring the Next Generation Proceedings of the International Conference on Spatial Structures 2020/21 (IASS2020/21-Surrey7). International Association for Shell and Spatial Structures (IASS); Spatial Structures Research Centre of the University of Surrey.
- [25] Soriano, E., Tornabell, P., Naicu, D., & Filz, G. (Oct 2015). Topologically-based curvature in thin elastic shell networks. In VII International Conference on Textile Composites and Inflatable Structures. CIMNE. https://doi.org/10.13140/RG.2.1.3972.6965
- [26] Thater, D., Cooke, L., & Kelly, K. (Eds.). (2002). Knots + surfaces. Dia Center for the Arts.
- [27] Trimble Inc. (2024a, February 22). 3D Scanning Software | Trimble RealWorks. https://fieldtech.trimble.com/en/products/scanning/trimble-realworks
- [28] Trimble Inc. (2024b, June 2). Datasheet - Trimble X7 3D Laser Scanner. https://fieldtech.trimble.com/resources/product-guides-brochures-datasheets/datasheet-trimble-x7-3d-laser-scanner
- [29] Wunderlich, T., Wasmeier, P., Ohlmann-Lauber, J., Schäfer, T., & Reidl, F. (2013). Objective Specifications of Terrestrial Laserscanners - A Contribution of the Geodetic Laboratory at the Technische Universität München (Blaue Reihe des Lehrstuhls für Geodäsie No. 21). Lehrstuhl für Geodäsie, TUM.
- [30] Zhu, J., Zhao, Y., Zhang, W., Gu, X., Gao, T., Kong, J., Shi, G., Xu, Y., & Quan, D. (2018). Bio-Inspired Feature-Driven Topology Optimization for Rudder Structure Design. Engineered Science. Advance online publication. https://doi.org/10.30919/es8d716
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4027a71d-12d7-481a-be2e-b82557976855
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.