PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Research concerning fabrication of fibrous osteoconductive PLGA/HAp nanocomposite material using the method of electrospinning from polymer solution

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of the work was to obtain nano fibrous structures from biodegradable polymer with the addition of hydroxyapatite using electrospinning technique. Research was conducted with two types of solvent: dichloromethane and 50:50 mixture of dimethyl sulfoxide and dichloromethane. As a polymer a copolymer of L-lactide and glycolide (PLGA), commercial product with trade name Resomer®LG 824, was used. The preliminary electrospinning tests enabled to match optimal polymer solution concentration of tested samples. Rheological properties of all tested polymer solutions has been determined. Influence of electrospinning conditions and the type of solvent on macroscopic structure has been investigated.
Rocznik
Strony
57--66
Opis fizyczny
Bibliogr. 55 poz.
Twórcy
  • Technical University of Lodz, Department of Material and Commodity Sciences and Textile Metrology, ul. Żeromskiego 116, 90-924 Łódź, Poland
autor
  • Technical University of Lodz, Department of Material and Commodity Sciences and Textile Metrology, ul. Żeromskiego 116, 90-924 Łódź, Poland
  • Technical University of Lodz, Department of Material and Commodity Sciences and Textile Metrology, ul. Żeromskiego 116, 90-924 Łódź, Poland
  • Technical University of Lodz, Department of Material and Commodity Sciences and Textile Metrology, ul. Żeromskiego 116, 90-924 Łódź, Poland
autor
  • Technical University of Lodz, Department of Material and Commodity Sciences and Textile Metrology, ul. Żeromskiego 116, 90-924 Łódź, Poland
Bibliografia
  • [1] Bastioli C., Handbook of Biodegradable Polymers, Rapra Technology Limited, 2005, UK, ISBN: 1-85957-389-4
  • [2] Auras R.A., Lim L.-T., Selke S.E.M., Tsuji H., Poly(Lactic Acid): Synthesis, Structures, Properties, Processing, and Applications, John Wiley & Sons, 2011, Canada, ISBN: 978-0-470-29366-9
  • [3] Ikada Y., Tsuji H., Biodegradable polyesters for medical and ecological applications, Macromolecular Rapid Communications, Vol. 21, No. 3, pp. 117–132, 2000
  • [4] Auras R., Harte B., Selke S., An overview of polylactides as packaging materials. Macromolecular Bioscience, Vol. 4, pp. 835–864, 2004
  • [5] Guptaa B., Revagadea N., Hilborn J., Poly(lactic acid) fiber: An overview, Progress in Polymer Science, Vol. 32, pp. 455–482, 2007
  • [6] Weiler A., Hoffmann R.F.G., Stähelin A.C., Helling H.J., Südkamp N.P., Biodegradable implants in sports medicine: The biological base. Arthroscopy, The Journal of Arthroscopic and Related Surgery, Vol. 16, No. 3, pp. 305–321, 2000
  • [7] Eglin D., Alini M., Degradable polymeric materials for osteosynthesis: Tutorial, European Cells and Materials, Vol. 16, pp. 80–91, 2008
  • [8] Rudnik, E., Briassoulis, D., Degradation behaviour of poly(lactic acid) films and fibres in soil under Mediterranean field conditions and laboratory simulations testing, Industrial Crops & Products, Vol. 33, Issue 3, pp. 648–658, 2011, DOI: 10.1016/j.indcrop.2010.12.031
  • [9] Gruber P., O’Brien M., Polylactides “NatureWorks™ PLA”, Biopolymers Online, Wiley Online Library, pp. 235–239, 2005, DOI: 10.1002/3527600035.bpol4008
  • [10] Duda A., Penczek S., Polilaktyd [poli(kwas mlekowy)]: Synteza, właściwości i zastosowania, Polimery, Vol. 48, Issue 1, 2003
  • [11] Hyon S.H., Jamshidi K., Ikada Y., Synthesis of polylactides with different molecular weights, Biomaterials, Vol. 18, 1997
  • [12] Sodergad A., Stolt M., Properties of lactic acid based polymers and their correlation with composition, Progress in Polymer Science, Vol. 27, No. 6, Issue 41, pp. 1123– 1163, 2002
  • [13] Garlotta D., A literature review of poly(lactic acid), Journal of Polymers and the Environment, Vol. 9, No. 2, 2001
  • [14] Sawpan M.A., Mechanical Performance of Industrial Hemp Fibre Reinforced Polylactide and Unsaturated Polyester Composites, Doctoral Dissertation, The University of Waikato, Hamilton, Nowa Zelandia, 2009
  • [15] Breteler M.R., Stereoselective Polymerization of Lactones. Properties of Stereocomplexed PLA Building Blocks, Doctoral Dissertation, University of Twente, Holandia, 2010, ISBN: 978-90-365-3045-3
  • [16] Dobrzyński P., Bero M., Kasperczyk J., Sposób wytwarzania bioresorbowalnych polimerów, Opis Patentowy PL 191 846 B1, 2000
  • [17] Smoła A., Dobrzyński P. et al., Nowe semikrystaliczne bioresorbowalne materiały z pamięcią kształtu, Engineering of Biomaterials, Vol. XII, No. 89-91, 2009
  • [18] Dobrzyński P., Synthesis of biodegradable copolymers with low-toxicity zirconium compounds. V. Multiblock and random copolymers of L-lactide with trimethylene carbonate obtained in copolymerizations initiated with zirconium(IV) acetylacetonate, Journal of Polymer Science: Part A: Polymer Chemistry, Vol. 44, pp. 3184– 3201, 2006
  • [19] Bero M., Dobrzyński P., Kasperczyk J., Application of zirconium (IV) acetylacetonate to the copolymerization of glycolide with ε-caprolactone and lactide, Polymer Bulletin, 42, pp. 131–139, 1999
  • [20] Dobrzyński P., Initiation process of L-lactide polymerization carried out with zirconium(IV) acetylacetonate, Journal of Polymer Science: Part A: Polymer Chemistry, Vol. 42, pp. 1886–1900, 2004
  • [21] Dobrzyński P., Synthesis of biodegradable copolymers with low-toxicity zirconium compounds. III. Synthesis and chain-microstructure analysis of terpolymer obtained from L-lactide, glycolide, and ε-caprolactone initiated by zirconium(IV) acetylacetonate, Journal of Polymer Science: Part A: Polymer Chemistry, Vol. 40, pp. 3129– 3143, 2002
  • [22] Czajkowska B., Dobrzynski P., Bero M., Interaction of cells with L-lactide/glycolide copolymers synthesized with the use of tin or zirconium compounds, Journal of Biomedical Materials Research Part A, Vol. 74A, Issue 4, pp. 591– 597, 2005
  • [23] Kasperczyk J., Hu Y., Jaworska J., Dobrzynski P., Wei J., Li S., Comparative study of the hydrolytic degradation of glycolide/L-lactide/ε-caprolactone terpolymers initiated by zirconium(IV) acetylacetonate or stannous octoate, Journal of Applied Polymer Science, Vol. 107, pp. 3258– 3266, 2008
  • [24] Burkersrodaa von F., Schedlb L., Göpferich A. Why degradable polymers undergo surface erosion or bulk erosion. Biomaterials, Vol. 23, pp. 4221–4231, 2002
  • [25] Woodruff M.A., Werner-Hutmacher D. The return of a forgotten polymer—Polycaprolactone in the 21st century, Progress in Polymer Science, Vol. 35, Issue 10, pp. 1217– 1256, 2010
  • [26] Cicero J.A., Dorgan J.R., Physical properties and fiber morphology of poly(lactic acid) obtained from continuous two-step melt spinning, Journal of Polymers and the Environment, Vol. 9, pp. 1–10, 2001
  • [27] Yuan X., Mak Arthur F.T., Kwok K.W., Yung Brain K.O., Yao K., Characterization of poly(L-lactic acid) fibers produced by melt spinning, Journal of Applied Polymer Science, Vol. 81, pp. 251–260, 2001
  • [28] Nelson K.D., Romero A., Waggoner P., Crow B., Borneman A., Smith G.M., Technique paper for wet-spinning poly(Llactic acid) and poly(DL-lactide-co-glycolide) monofilament fibers, Tissue Engineering, Vol. 9, No. 6, pp. 1323–1330, 2003
  • [29] Kulkarni R.K., Pani K.C., Neuman C., Leonard F., Polylactic acid for surgical implants, Archives of Surgery, Vol. 93, No. 5, pp. 839–843, 1966
  • [30] Ikada Y., Gen S., Polylactic Acid Fiber – Patent 5010145, Daicel Chemical Industries, Ltd.,
  • [31] Rissanen M., Puolakka A., Ahola N., Tonry A., Rochev Y., Kellomäki M., Nousiainen P., Effect of protein-loading on properties of wet-spun poly(L,D-lactide) multifilament fibers, Journal of Applied Polymer Science, Vol. 116, pp. 2174–2180, 2010
  • [32] Gao H., Gu Y., Ping Q., The implantable 5-fluorouracilloaded poly(L-lactic acid) fibers prepared by wet-spinning from suspension, Journal of Controlled Release, Vol. 118, No. 3, 23, pp. 325–332, 2007
  • [33] Boguń M., Krucińska I., Król P., Szparaga G., Mikołajczyk T., Dobrzyński P., Kowalczuk M., Kasperczyk J., Pastusiak M., Smoła A., Sposób wytwarzania włókien o rozmiarach mikrometrycznych i podwyższonych właściwościach wytrzymałościowych z poli(kwasu mlekowego) oraz jego kopolimerów metodą z roztworu na mokro, Opis patentowy PL P-399819, 2012
  • [34] Kumar C.S.S.R., Nanotechnologies for the Life Sciences, Vol. 9, Tissue, Cell and Organ Engineering, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006, ISBN: 3-527-31389-3
  • [35] Subbiah T., Bhat G.S., Tock R.W., Parameswaran S., Ramkumar S.S., Electrospinning of nanofibers, Journal of Applied Polymer Science, Vol. 96, pp. 557–569, 2005
  • [36] Garg K., Bowlin G.L., Electrospinning jets and nanofibrous structures, Biomicrofluidics, Vol. 5, No. 1, 2011
  • [37] Li J., He A., Han C.C., Fang D., Hsiao B.S., Chu B., Electrospinning of hyaluronic acid (HA) and HA/gelatin blends, Macromolecular Rapid Communications, Vol. 27, pp. 114–120, 2006
  • [38] Huang Z.-M., Zhang Y.-Z., Kotaki M., Ramakrishna S., A review on polymer nanofibers by electrospinning and their applications in nanocomposites, Composites Science and Technology, Vol. 63, pp. 2223–2253, 2003
  • [39] Andrady A.L., Science and Technology of Polymer Nanofibers, John Wiley & Sons, Inc., 2008
  • [40] Ramakrishna S., An Introduction to Electrospinning and Nanofibers, World Scientific Publishing Company, 2005
  • [41] Lu P., Ding B., Applications of electrospun fibers, Recent Patents on Nanotechnology, Vol. 2, pp. 169–182, 2008
  • [42] Burger C., Hsiao B.S., Chu B., Nanofibrous materials and their applications, Annual Review of Materials Research, Vol. 36, pp. 333–368, 2006
  • [43] Ji W., Sun Y., Yang F., van den Beucken J.J.J.P., Fan M., Chen Z., Jansen J.A., Bioactive electrospun scaffolds delivering growth factors and genes for tissue engineering applications, Pharmaceutical Research, Vol. 28, pp. 1259–1272, 2011, DOI 10.1007/s11095-010-0320-6
  • [44] Liu W., Thomopoulos S., Xia Y., Electrospun nanofibers for regenerative medicine, Advanced Healthcare MaterIals, Vol. 1, pp. 10–25, 2012
  • [45] Teo W.-E., Inai R., Ramakrishna S., Technological advances in electrospinning of nanofibers, Science and TechnolOgy of Advanced Materials 12, 2011doi:10.1088/1468- 6996/12/1/013002
  • [46] Ponclet D., de Vois P., Suter N., Jayasinghe S.N., Bioelectrospraying and cell electrospinning: Progress and opportunities for basic biology and clinical sciences, Advanced Healthcare Materials, Vol. 1, Issue 1, pp. 26– 34, 2012
  • [47] Ionescu L.C., Lee G.C., Sennett B.J., Burdick J.A., Mauck R.L., An anisotropic nanofiber/microsphere composite with controlled release of biomolecules for fibrous tissue engineering, Biomaterials, Vol. 31, Issue 14, pp. 4113– 4120, 2010
  • [48] Lim L.-T., Auras R., Rubino M., Processing technologies for poly(lactic acid), Progress in Polymer Science, Vol. 33, Issue 8, pp. 820–852, 2008
  • [49] Ji W., Sun Y., Yang F., van den Beucken J.J.J.P., Fan M., Chen Z., Jansen J.A., Bioactive electrospun scaffolds delivering growth factors and genes for tissue engineering applications, Pharmaceutical Research, Vol. 28, pp. 1259–1272, 2011, DOI 10.1007/s11095-010-0320-6
  • [50] Liu W., Thomopoulos S., Xia Y., Electrospun nanofibers for regenerative medicine, Advanced Healthcare Materials, Vol. 1, No. 1, pp. 10–25, 2012
  • [51] Chew S.Y., Wen Y., Dzenis Y., Leong K.W., The role of electrospinning in the emerging field of nanomedicine, Current Pharmaceutical Design, Vol. 12, Issue 36, pp. 4751–4770, 2006
  • [52] Buschle-Diller G., Cooper J., Xie Z., Wu Y., Waldrup J., Ren X., Release of antibiotics from electrospun bicomponent fibers, Cellulose, Vol. 14, pp. 553–562, 2007, DOI 10.1007/s10570-007-9183-3
  • [53] Bhattarai S.R., Bhattarai N., Viswanathamurthi P., Yi H.K., Hwang P.H., Kim H.Y., Hydrophilic nanofibrous structure of polylactide; fabrication and cell affinity, Journal of Biomedical Materials Research Part A, Vol. 78, Issue, 2 , pp. 247–257, 2006
  • [54] Lu P., Ding B., Applications of Electrospun fibers, Recent Patents on Nanotechnology, Vol. 2, pp. 169–182, 2008
  • [55] Pillai C.K.S., Sharma C.P., Electrospinning of chitin and chitosan nanofibres, Trends in Biomaterials and Artificial Organs, Vol. 22, Issue 3, pp. 179–201, 2009
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-402751da-7b53-4de2-9f7c-2b5d9ee7c223
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.