Elżbieta GABRUŚ, Dorota DOWNAROWICZ

e-mail: elzbieta.gabrus@zut.edu.pl

Instytut Inżynierii Chemicznej i Procesów Ochrony Środowiska, Wydział Technologii i Inżynierii Chemicznej, Zachodniopomorski Uniwersytet Technologiczny, Szczecin

Analiza krzywych przebicia w procesie adsorpcyjnego odwadniania alkoholi alifatycznych

Wstęp

Alkohole alifatyczne, takie jak etanol, propanol i butanol, otrzymywane mogą być biotechnologicznie, z wykorzystaniem mikroorganizmów. Etanol, jako biopaliwo, jest dobrze znany i szeroko stosowany [*Gabruś i Downarowicz, 2016*]. W ostatnich latach pojawiły się publikacje na temat możliwości zastąpienia etanolu przez propanol lub butanol. Alkohole te jako paliwa, posiadają korzystniejsze niż etanol, a zbliżone do benzyny, właściwości: lotność, gęstość, lepkość, temperatura wrzenia, wartość energetyczną, niską korozyjność i higroskopijność [*Shen i Liao, 2013; Moxey i in., 2016*].

Jednym z głównych problemów, które pojawiają się w procesie wytwarzania biopaliw jest dobór odpowiedniej metody ich rozdziału i oczyszczania z mieszaniny pofermentacyjnej. W celu odseparowania produktów fermentacji stosuje się zwyczajowo destylację, jednak nie zapewnia ona otrzymywania bezwodnych produktów [*Nagy i Boldyryev, 2013*]. Finalne usuwanie wody z alkoholi alifatycznych, do poziomu określonego normami, można przeprowadzić metodą adsorpcyjną w kolumnie z nieruchomym złożem z odpowiednio dobranym adsorbentem [*Gabruś i Downarowicz, 2014*]. Zagadnienie to wpisuje się w obszar prężnie rozwijającego się sektora biopaliwowego w ramach odnawialnych źródeł energii.

Krzywe przebicia, charakteryzujące pracę złoża adsorbentu, wyznacza się doświadczalnie lub w wyniku modelowania matematycznego. Są one niezbędne do projektowania i powiększania skali kolumn adsorpcyjnych. Celem pracy jest ocena przydatności wybranych modeli dynamiki adsorpcji do przewidywania tych krzywych.

Badania doświadczalne

Materiały. Badania przeprowadzono dla różnych wartości stężenia początkowego wody w alkoholach (2-10% wag) oraz przy pozornych prędkościach przepływu cieczy przez kolumnę 2 i 3·10⁻⁴ m/s (odpowiednio dla butanolu i propanolu).

Aparatura. Badania procesu adsorpcji wody z ciekłych roztworów alkoholi alifatycznych przeprowadzono w instalacji wielkolaboratoryjnej na złożu zeolitowych sit molekularnych ZSM3A (propanol) lub ZSM4A (butanol), usypanym w kolumnie o średnicy 5 cm do wysokości 0,76 m. Instalacja do adsorpcji zmiennotemperaturowej została omówiona w pracy [*Gabruś i Downarowicz, 2016*].

Wyniki badań. W niniejszej pracy przedstawiono wybrane wyniki badań, których parametry zestawiono w tab. 1. Doświadczalne krzywe przebicia wykorzystano do weryfikacji modeli matematycznych.

Tab. 1. Zestawienie parametrów operacyjnych wybranych cykli adsorpcyjnych

układ	woda-	propanol-ZS	SM3A	woda	M4A	
cykl	P2	P5	P6	B5	B6	B8
C ₀ , kg/kg	0,021	0,044	0,052	0,060	0,104	0,035
w, m/s	3.10-4	3.10-4	3.10-4	$2 \cdot 10^{-4}$	2.10-4	2.10^{-4}

Przegląd modeli krzywych przebicia

Do przewidywania pełnych krzywych przebicia na nieruchomym złożu adsorbentu stosowane są zazwyczaj złożone modele matematyczne. Jednakże ich rozwiązanie wymaga znajomości wielu parametrów, które muszą być określone w niezależnych badaniach kinetycznych lub z zastosowaniem odpowiednich korelacji. Znając równowagę oraz kinetykę badanego układu można dokonać założeń upraszczających takich jak: zastosowanie wybranej izotermy adsorpcji (liniowa, prostokątna, *Freundlicha* lub *Langmuira*) z kinetyką reakcji pseudodrugorzędowej oraz przy założeniu przepływu tłokowego przez adsorber. W rezultacie można uzyskać analityczne rozwiązania równania bilansu masy dla kolumny z nieruchomym złożem adsorbentu [*Xu i in., 2013*]. W praktyce najczęściej do przewidywania krzywych przebicia stosowane są uproszczone modele dynamiki adsorpcji *Thomasa, Yoona* i *Nelsona, Boharta* i *Adamsa, Wolborskiej* [*Katsigiannis i in., 2015*], *Yana* [*Zou i Zhao, 2012*] oraz *Clarka* [*Ghribi i Chlendi, 2011*].

Analityczne rozwiązanie modelu Thomasa opiera się na nieliniowej izotermie Langmuira oraz kinetyce reakcji pseudodrugorzędowej [Xu i in., 2013; Zhou i Zhao, 2012]. Rozwiązanie Borharta i Adamsa oparte jest na założeniu izotermy prostokątnej [Millar i in., 2015]. Model Yoona i Nelsona zakłada, że prawdopodobieństwa adsorpcji i desorpcji każdej cząsteczki zaadsorbowanej są proporcjonalne, przyjmuje symetryczność krzywych przebicia względem punktu stechiometrycznego i nie wymaga szczegółowych danych na temat adsorbatu i adsorbentu [Katsigiannis i in., 2015]. Model Clarka opiera się na koncepcji przenoszenia masy w połaczeniu z izotermą Freundlicha oraz tłokowym przepływie płynu w adsorberze z pominięciem zjawiska dyspersji osiowej [Ghribi i Chlendi, 2011]. Model Wolborskiej zakłada, że adsorpcja w pierwszym okresie jest kontrolowana przez mechanizm dyfuzji w filmie [Katsigiannis i in., 2015]. Model Yana bazuje na równaniu Thomasa i został opracowany jako zmodyfikowany model dose-response, w celu dokładniejszego przewidywania stężenia w początkowym i końcowym obszarze krzywej przebicia [Zou i Zhao, 2012].

Modele te wymagają znajomości parametrów takich jak: stężenie początkowe adsorbatu, objętościowe natężenie przepływu cieczy, liniowa prędkość cieczy w kolumnie oraz masa, wysokość, gęstość i porowatość złoża [Katsigiannis i in., 2015]. Pomimo ograniczeń, są one szeroko stosowane do przewidywania krzywych przebicia, zarówno dla adsorpcji w fazie gazowej, jak i ciekłej.

Analiza przydatności uproszczonych modeli adsorpcji

Poniżej została przedstawiona analiza przydatności uproszczonych modeli adsorpcji do przewidywania krzywych przebicia dla badanych układów ciekłych. W tab. 2 przedstawiono równania matematyczne omawianych modeli matematycznych: *Thomasa, Borharta* i *Adamsa, Yoona-Nelsona, Wolborskiej, Yana* i *Clarka.* Przykładowe wyniki obliczeń modelowych krzywych przebicia zestawiono z wynikami doświad-czalnymi i przedstawiono dla propanolu na rys. 1, a dla butanolu na rys. 2.

Rys. 1. Punkty doświadczalne oraz obliczeniowe krzywe przebicia dla adsorpcji wody z propanolu

Rys. 2. Punkty doświadczalne oraz obliczeniowe krzywe przebicia dla adsorpcji wody z butanolu

Kluczowym parametrem, który określa pracę złoża jest czas przebicia, przyjmowanego najczęściej dla stężenia wylotowego $C/C_0 = 0,05$. Istotnym dla projektowania adsorberów jest zakres krzywej do osiągnięcia czasu stechiometrycznego dla zakresu stężenia względnego 0÷0,5. W analizie skoncentrowano się na początkowym odcinku krzywych. Wyniki obliczeń przedstawiono w tab. 2.

Tab. 2. Zestawienie parametrów modeli do obliczania krzywych przebicia	dla
adsorpcji wody z ciekłego propanolu (P) i butanolu (B) na złożu ZSM3A	lub
ZSM4A	

	Model Thomasa			Model Boharta i Adamsa		
Cykl	$\frac{C}{C} = \frac{1}{1}$	1	$\frac{C}{C} = \exp\left(k_{BA}C_0t - k_{BA}q_m\frac{H}{M}\right)$			
	C_0 1+exp	$k_{TH}q_0m/Q-1$	$C_0 = (w)$			
	k_{TH} , m ³ /(kg·s)	q_0 , kg/kg	$\delta_{sr}, \%$	k_{BA} , m ³ /(kg·s)	q_m , kg/m ³	$\delta_{sr},\%$
P2	2,05.10-5	0,170	8,72	2,05.10-5	147,49	23,66
P5	2,80.10-5	0,222	20,99	2,80.10-5	192,85	28,72
P6	2,91.10-5	0,261	38,00	2,91.10-5	253,10	53,86
B5	7,27.10-6	0,296	15,72	7,27.10-6	223,54	91,08
B6	7,52.10-6	0,403	41,93	7,52.10-6	304,89	100,07
B8	1,64.10-5	0,194	60,92	1,64.10-5	146,54	97,53
	Model Yoona i Nelsona			Model Wolborskiej		
Cykl	C _	1	$C \qquad \begin{pmatrix} \beta_I C_0 t & \beta_I H \end{pmatrix}$			
	C_0^{-1+}	$\exp\left[k_{YN}\left(t_{1/2}\right)\right]$	$\overline{C_0} = \exp\left(\frac{1}{q_m} - \frac{1}{w}\right)$			
	k _{YN} , 1/s	<i>t</i> _{1/2} , s	$\delta_{sr}, \%$	β_L , 1/s	q_m , kg/m ³	$\delta_{sr},\%$
P2	3,48.10-4	2,25·10 ⁴	8,34	2,62.10-3	161,51	17,48
P5	9,92.10-4	1,03.104	20,88	4,78.10-3	206,29	30,39
P6	1,11.10-3	$1,12 \cdot 10^4$	37,90	5,98·10 ⁻³	267,45	64,96
B5	3,55.10-4	$1,74 \cdot 10^4$	19,79	1,37.10-3	263,38	32,29
B6	6,43·10 ⁻⁴	1,35·10 ⁴	42,26	2,05.10-3	335,25	59,57
B8	4,65.10-4	1,96·10 ⁴	62,21	2,22.10-3	156,43	78,27
	Ν	Iodel Yana		Mo	Model Clarka	
Cykl	<u>_</u>	1	<u>C</u> 1			
	$C_0 = 1 + \exp(k_1)$	$r_{H}q_{0}m/Q-k_{TH}$	$C_0 (1 + A_C e^{-r_C t})^{1/(r_C - 1)}$			
	k_Y , m ³ /(kg·s)	<i>q₀</i> , kg/kg	$\delta_{sr}, \%$	<i>r_C</i> , 1/s	A_C , –	$\delta_{sr}, \%$
P2	2,11.10-4	2,70.10-2	6,12	2,71.10-3	1,70.10 ²⁹	17,48
P5	1,90.10-4	2,61.10-2	14,49	8,13·10 ⁻³	4,13·10 ³⁸	30,57
P6	2,02.10-4	2,69.10-2	35,06	9,35·10 ⁻³	2,35·10 ⁴⁸	51,41
B5	4,15.10-5	5,60·10 ⁻²	10,85	4,30·10 ⁻³	1,31.1038	33,08
B6	3,23.10-5	5,80·10 ⁻²	25,03	8,88·10 ⁻³	1,99.1057	59,19
B8	9,97.10-5	2,70.10-2	44,08	6,83·10 ⁻³	1,66.1062	77,04

Wnioski

Zaobserwowano, że krzywe przebicia dla układu z butanolem charakteryzują się mniejszą symetrycznością niż w przypadku propanolu (Rys. 1 i 2), co ogranicza przydatność uproszczonych modeli do ich opisu. Na podstawie przeprowadzonych badań i obliczeń stwierdzono, że doświadczalne krzywe przebicia dla adsorpcji wody z propanolu i butanolu na zeolitowych sitach molekularnych ZSM3A i ZSM4A są w początkowym zakresie stężeń ($C/C_0 < 0,1$) dobrze opisywane przez wszystkie modele, tj. *Thomasa, Yoona* i *Nelsona, Boharta* i *Adamsa, Wolborskiej, Yana* oraz *Clarka* (Rys. 1 i 2). Zatem można je stosować do określania czasu przebicia.

Modele *Thomasa* i *Yoona-Nelsona* dają bardzo zbliżone wyniki. Modele te bardzo dobrze opisują w pełnym zakresie krzywe przebicia (przy różnych stężeniach włotowych), dla układu z propanolem, podobnie jak dla układu z etanolem [*Gabruś i Downarowicz, 2016*], natomiast dla butanolu dobrą zgodność można uzyskać tylko w początkowym obszarze stężeńdo $C/C_0 < 0,4$.

Krzywe obliczone z modeli *Yana* i *Clarka* nie w pełni uwzględniają ich asymetryczność, co nie pozwala na dobre dopasowanie do danych doświadczalnych w zakresie wysokich stężeń względnych, chociaż w zadowalający sposób oddaje początkowy przebieg. Modele *Boharta* i *Adamsa* oraz *Wolborskie*j nie nadają się do przewidywania krzywych przebicia dla badanych układów.

OZNACZENIA

- A_C stała modelu *Clarka*, [–]
- C_0 , C stężenie włotowe, wylotowe adsorbatu, [kg/m³]
- *H* wysokość złoża w kolumnie, [m]
- k_{BA} stała szybkości w modelu *Boharta* i *Adamsa*, [m³/kg·s]
- k_{TH} stała szybkości w modelu *Thomasa*, [m³/kg·s]
- k_Y stała szybkości w modelu *Yana*, [m³/kg·s]
- *k*_{YN} stała szybkości w modelu Yoona i Nelsona, [1/s]
 - masa adsorbentu, [g]
 - objętościowe natężenie przepływu cieczy, [m³/s]
- q_0 pojemność adsorpcyjna adsorbentu, [kg/kg]
- q_m maksymalna objętościowa pojemność adsorpcyjna, [kg/m³]
- r_{c} stała w modelu *Clarka*,[1/s]
- czas, [s]

mQ

t

- $t_{1/2}$ czas osiągnięcia połowy nasycenia adsorbentu, [s]
- *w* liniowa prędkość przepływu cieczy w kolumnie, [m/s]
- β_L współczynnik wnikania masy, [1/s]

LITERATURA

- Gabruś E., Downarowicz D., (2016). Anhydrous ethanol recovery from wet air in TSA systems - equilibrium and column studies. *Chem. Eng. J.*, 288, 321-331. DOI:10.1016/j.cej.2015.11.110
- Gabruś E., Downarowicz D., (2014). Odwadnianie ciekłego etanolu na adsorbentach zeolitowych. Inż. Ap. Chem., 53(4), 239-240
- Ghribi A., Chlendi M., (2011). Modeling of fixed bed adsorption: application to the adsorption of an organic dye. Asian Text. J., 1, 161-171. DOI: 10.3923/ajt.2011.161.171
- Katsigiannis A., Noutsopoulos C., Mantziaras J., Gioldasi M., (2015). Removal of emerging pollutants through Granular Activated Carbon. *Chem. Eng. J.* 280, 49–57.DOI: 10.1016/j.cej.2015.05.109
- Millar G.J., Couperthwaite S.J., de Bruyn M., Leung Ch.W., (2015). Ion exchange treatment of saline solutions using Lanxess S108H strong acid cation resin. *Chem. Eng. J.* 280, 525–535. DOI: 10.1016/ j.cej.2015.06.008
- Moxey B. G., Cairns A., Zhao H., (2016). A comparison of butanol and ethanol flame development in in optical spark ignition engine. *Fuel*, 170 27–38. DOI: 10.1016/j.fuel.2015.12.008
- Nagy E., Boldyryev S., (2013). Energy demand of biofuel production applying distillation and/or pervaporation. *Chem. Eng. Trans.*, 35, 265-270. DOI: 10.3303/cet1335044
- Shen C.R., Liao J.C., (2013). Synergy as design principle for metabolic engineering of 1-propanol production in Escherichia coli. *Metab. Eng.*, 17, 12-22. DOI: 10.1016/j.ymben.2013.01.008
- Xu Z., Cai J., Pan B., (2013). Mathematically modeling fixed-bed adsorption in aqueous systems. J. Zhejiang Univ-Sci A (Appl Phys & Eng), 14, 3, 155-176. DOI: 10.1631/jzus.A1300029
- Zou W., Zhao L., (2012). Removal of uranium (VI) from aqueous solution using citric acid modified pine sawdust: batch and column studies. J. Radioanal Nucl. Chem., 292, 585-595. DOI: 10.1007/s10967-011-1452-9