PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optical investigations of ZnO layers affected by some selected gases in the aspect of their application in optical gas sensors

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents the results of investigations of zinc oxide (ZnO) layers as a potential sensing material, being affected by certain selected gaseous environments. The investigations concerned the optical transmission through thin ZnO layers in wide spectral ranges from ultraviolet to the near infrared. The effect of the gaseous environment on the optical properties of zinc oxide layers with a thickness of ~ 400 nm was analyzed applying various technologies of ZnO manufacturing. Three kinds of ZnO layers were exposed to the effect of the gaseous environment, viz.: layers with relatively slight roughness (RMS several nm), layers with a considerable surface roughness (RMS some score of nm) and layers characterized by porous ZnO structures. The investigations concerned spectral changes in the transmission properties of the ZnO layers due to the effect of such gases as: ammonia (NH3), hydrogen (H2), and nitrogen dioxide (NO2) in the atmosphere of synthetic air. The obtained results indicated the possibility of applying porous ZnO layered structures in optical gas sensors.
Słowa kluczowe
Rocznik
Strony
829--836
Opis fizyczny
Bibliogr. 25 poz., wykr., fot., rys.
Twórcy
autor
  • Department of Optoelectronics at Faculty of Electrical Engineering, Silesian University of Technology, 2a Akademicka St., 44-100 Gliwice, Poland
autor
  • Department of Optoelectronics at Faculty of Electrical Engineering, Silesian University of Technology, 2a Akademicka St., 44-100 Gliwice, Poland
  • Institute of Electron Technology, 32/46 Lotnikow Ave., 02-668 Warsaw, Poland
  • Institute of Electron Technology, 32/46 Lotnikow Ave., 02-668 Warsaw, Poland
  • Institute of Electron Technology, 32/46 Lotnikow Ave., 02-668 Warsaw, Poland
Bibliografia
  • [1] M.M. Arafat, B. Dinan, S.A. Akbar, and A.S.M.A. Haseeb, “Gas sensors based on one dimensional nanostructured metaloxides a review”, Sensors 12 (6), 7207-7258 (2012).
  • [2] H. Liu, J. Wan, Q. Fu, M. Li, W. Luo, Z. Zheng, H. Cao, Y. Hu, and D. Zhou, “Tin oxide films for nitrogen dioxide gas detection at low temperature”, Sensors and Actuators B 177, 460-466 (2013).
  • [3] C. Wang, L. Yin, L. Zhang, D. Xiang, and R. Gao, “Metal oxide gas sensors: sensitivity and influencing factors”, Sensors 10, 2088-2106 (2010).
  • [4] E. Maciak and T. Pustelny, “An optical ammonia (NH3) gas sensing by means of Pd/CuPc interferometric nanostructures based on white light interferometry”, Sensors and Actuatore B-Chemica 189, 230-239 (2013).
  • [5] O. Lupana, V.V. Ursaki, G. Chai, L. Chow, G.A. Emelchenko, I.M. Tiginyanu, A.N. Gruzintsev, and A.N. Redkin, “Selective hydrogen gas nanosensor using individual ZnO nanowire with fast response at room temperature”, Sensors and Actuators B 144, 56-66 (2010).
  • [6] E.D. Gaspera, M. Guglielmi, A. Martucci, L. Giancaterini, and C. Cantalini, “Enhanced optical and electrical gas sensing response of sol-gel based NiO-Au and ZnO-Au nanostructured thin films”, Sensors and Actuators B 164, 54-63 (2012).
  • [7] C. de Julián Fernández, M.G. Manera, G. Pellegrini, M. Bersani, G. Mattei, R. Rella, L. Vasanelli, and P. Mazzoldi, “Surface plasmon resonance optical gas sensing of nanostructured ZnO films”, Sensors and Actuators B 130, 531-537 (2008).
  • [8] M. Procek and T. Pustelny, “Analysis of the responces of metaloxide semiconductor nanostructures to nitrogen dioxide”, Acta Physica Polonica A 124, 529-533 (2013).
  • [9] M. Krzywiecki, L. Grządziel, A. Sarfraz, D. Iqbal, A. Szwajca, and A. Erbea, “Zinc oxide as a defect-dominated material in thin films for photovoltaic applications-experimental determination of defect levels, quantification of composition, and construction of band diagram”, Physical Chemistry Chemical Physics 17 (15), 10004-10013 (2015).
  • [10] C. Jagadish and S. Pearton, Zinc Oxide Bulk, Thin Films and Nanostructures, Processing, Properties, and Applications, Elsevier, Berlin, 2006.
  • [11] L. Hongjun, Z. Zang, and X. Tang “Synthesis mechanism and optical properties of well nanoflower-shaped ZnO fabricated by a facile method”, Optical Materials Express 4 (9), 1762-1769 (2014).
  • [12] J.S. Tawalea, A. Kumarb, A. Mohanb, and A.K. Srivastava, “Influence of silver and graphite on zinc oxide nanostructures for optical application”, Optical Materials 35, 1335-1341 (2013).
  • [13] P. Struk, T. Pustelny, and Z. Opilski, “Researches on the spectral transmittance of Zinc Oxide ZnO semiconductor layer”, Acta Physica Polonica A 118, 1239-1241 (2010).
  • [14] R.G. Heideman, P.V. Lambeck, P.V., and J.G.E Gardeniers, “High quality ZnO layers with adjustable refractive indices for integrated optics applications”, Optical Materials 4, 741-755 (1995).
  • [15] H. Wang, C. Liao, Y. Chueh, C. Lai, P. Chou, and S. Ting, “Crystallinity improvement of ZnO thin film by hierarchical thermal annealing”, Optical Materials Express 3 (2), 295-306 (2013).
  • [16] T. Pustelny, M. Procek, E. Maciak, A. Stolarczyk, S. Drewniak, M. Urbańczyk, M. Setkiewicz, K. Gut, and Z. Opilski, “Gas sensors based on nanostructures of semiconductors ZnO and TiO2”, Bull. Pol. Ac.: Tech. 60, 853-859 (2012).
  • [17] Z. Fan and J.G. Lu, “Zinc oxide nanostructures: synthesis and properties”, J. Nanoscience and Nanotechnology 5, 1561-1573 (2005).
  • [18] Z.L. Wang, “Zinc oxide nanostructures: growth, properties and applications”, J. Physics: Condensed Matter 16, R829-R858 (2004).
  • [19] P.X. Gao and Z.L.Wang, “Nanopropeller arrays of zinc oxide”, Applied Physics Letters 84, 2883-2885 (2004).
  • [20] S.W. Kim, M. Ueda, T. Kotani, S. Fujita, and S. Fujita, “Selftailored one-dimensional ZnO nanodot arrays formed by metalorganic chemical vapor deposition”, Japan Society of Applied Physics 42, L 568-L 57 (2003).
  • [21] S. Muthukumar, H. Sheng, J. Zhong, Z. Zhang, N.W. Emanetoglu, and Y. Lu, “Selective MOCVD growth of ZnO nanotips”, IEEE Trans. on Nanotechnology 2, 50-53 (2003).
  • [22] P. Struk, T. Pustelny, K. Gołaszewska, E. Kamińska, M. Borysiewicz, M. Ekielski, and A. Piotrowska, “Photonic structures with grating couplers based on ZnO”, Opto-Electron. Rev. 19, 462-467 (2011).
  • [23] P. Struk, T. Pustelny, K. Golaszewska, E. Kaminska, A.A. Borysewicz, M. Ekielski, and A. Piotrowska, “Hybrid photonics structures with greting and prism couplers based on ZnO waveguides”, Opto-Electron. Rev. 21, 376-381 (2013).
  • [24] M.A. Borysiewicz, E. Dynowska, V. Kolkovsky, M. Wielgus, K. Gołaszewska, E. Kamińska, M. Ekielski, P. Struk, T. Pustelny, and A. Piotrowska, “Sputter deposited ZnO porous films for sensing applications”, MRS Fall Meeting, MRSF12-1494- Z04-38.R2 (2012).
  • [25] M.A. Borysewicz, E. Dynowska, V. Kolkovsky, J. Dyczewski, M. Wielgus, E. Kaminska, and A. Piotrowska, “From porous to dense thin ZnO films through reactive DC sputtering deposition onto Si(100)”, Physica Status Solidy (A) Applications and Materials Sciences 209, 2463-2469 (2012).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-40245715-df3f-4411-adb6-f16522a323df
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.