Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This study investigates the influence of the chemical and physical properties of two abundantly available waste by-products in Sri Lanka, fly ash and rice husk ash (RHA) as precursor materials for the synthesis of alkali-activated binders. The suitability of the two types of fly ash and the replacement of fly ash by RHA (10% and 20% by weight of the binder content) were assessed. The study reports the development of compressive strength together with an in-depth analysis of the reaction mechanism of the blended RHA alkali-activated binders. The 100% fly ash mortar achieved the optimum compressive strength of 38.9 MPa at 28 days. Replacement of the fly ash with 10% and 20% RHA reduced the compressive strength by approximately 14% and 43%, respectively. The higher specific surface area of RHA and relatively higher unburnt carbon content in RHA were identified as the major factors influencing the low compressive strength obtained. Furthermore, the addition of RHA increases the reactive silica in the gel matrix and leads to an increase in the Si/Al ratio (3.70–3.89), which has a negative effect on the compressive strength. The difference in solubility rate of precursor fly ash and RHA negatively affect the formation of the gel matrix which is hypothesized as a further reason for the lower compressive strength observed in the RHA mixes.
Czasopismo
Rocznik
Tom
Strony
art. no. e24, 2022
Opis fizyczny
Bibliogr. 35 poz., rys., tab., wykr.
Twórcy
autor
- School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
- Faculty of Engineering, University of Peradeniya, Peradeniya, Sri Lanka
autor
- School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
autor
- School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
autor
- Faculty of Engineering, University of Peradeniya, Peradeniya, Sri Lanka
autor
- School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
autor
- Faculty of Engineering, University of Peradeniya, Peradeniya, Sri Lanka
autor
- Research and Development, Tokyo Cement Company (Lanka) PLC, Colombo, Sri Lanka
Bibliografia
- 1. Schneider M, et al. Sustainable cement production-present and future. Cem Concr Res. 2011;41(7):642–50.
- 2. Survey UG. Mineral commodity summaries, 2009. Government Printing Office; 2009.
- 3. Gunasekara C, et al. Effect of nano-silica addition into high volume fly ash–hydrated lime blended concrete. Constr Build Mater. 2020;253:119205.
- 4. Herath C, et al. Performance of high volume fly ash concrete incorporating additives: A systematic literature review. Constr Build Mater. 2020;258:120606.
- 5. He P, et al. Effects of Si/Al ratio on the structure and properties of metakaolin based geopolymer. Ceram Int. 2016;42(13):14416–22.
- 6. Purdon A. The action of alkalis on blast-furnace slag. J Soc Chem Ind. 1940;59(9):191–202.
- 7. Khan MNN, et al. An overview on manufacturing of Rice husk ahs as supplementary cementitous material. Aust J Basic Appl Sci. 2014;8(19):176–81.
- 8. Kim YY, et al. Strength and durability performance of alkali-activated rice husk ash geopolymer mortar. Sci World J. 2014;2014:209584.
- 9. Das SK, Mishra J, Mustakim SM. Rice husk ash as a potential source material for geopolymer concrete: a. Int J Appl Eng Res. 2018;13(7):81–4.
- 10. Hwang CL, Huynh TP. Effect of alkali-activator and rice husk ash content on strength deveoplment of fly ash and residual rice husk ash based geopolymers. Constr Build Mater. 2015;101:1–9.
- 11. Kusbiantoro A, et al. The effect of microwave incinerated rice husk ash on the compressive and bond strength of fly ash based geopolymer concrete. Constr Build Mater. 2012;36:695–703.
- 12. Hwang C-L, Huynh T-P. Effect of alkali-activator and rice husk ash content on strength development of fly ash and residual rice husk ash-based geopolymers. Constr Build Mater. 2015;101:1–9.
- 13. Usman M, Pandian S. Study on fly ash and rice husk ash based geopolymer concrete with steel fibre. Civ Eng Syst Sustain Innov. 2014; ISBN: 978-9383083-78-7.
- 14. Inti S, Sharma M, Tandon V. Ground granulated blast furnace slag (GGBS) and rice husk ash (RHA) uses in the production of geopolymer concrete. In: Geo-Chicago 2016; 621–632.
- 15. Rêgo JHS, et al. Microstructure of cement pastes with residual rice husk ash of low amorphous silica content. Constr Build Mater. 2015;80:56–68.
- 16. Khodr M, et al. Compressive strength and microstructure evolution of low calcium brown coal fly ash-based geopolymer. J Sustain Cem-Based Mater. 2020;9(1):17–34.
- 17. Gunasekara C, et al. Zeta potential, gel formation and compressive strength of low calcium fly ash geopolymers. Constr Build Mater. 2015;95:592–9.
- 18. ASTM C109, 109M. Standard test method for compressive strength of hydraulic cement mortars (Using 2-in. or [50-mm] Cube Specimens). West Conshohocken: ASTM International; 2013.
- 19. AS 1012.9. Methods of testing concrete–compressive strength tests–concrete, mortar and grout specimens. Standards Australia; 2014.
- 20. ASTM 1437. Standard test method for flow of hydraulic cement mortar (ASTM 1437-01). Pennsylvania: ASTM International; 2001.
- 21. Gunasekara C, et al. Engineering properties of geopolymer aggregate concrete. J Mater Civ Eng. 2018;30(11):04018299.
- 22. Chopra D, Siddique R, Kunal K. Strength, permeability and microstructure of self-compacting concrete containing rice husk ash. Biosyst En. 2015;130:72–80.
- 23. Mucsi G, et al. Control of geopolymer properties by grinding of land filled fly ash. Int J Miner Process. 2015;143:50–8.
- 24. Panias D, Giannopoulou IP, Perraki T. Effect of synthesis parameters on the mechanical properties of fly ash-based geopolymers. Colloids Surf Physicochem Eng Aspects. 2007;301(1–3):246–54.
- 25. Zhang Z, Wang H, Provis JL. Quantitative study of the reactivity of fly ash in geopolymerization by FTIR. J Sustain Cem-Based Mater. 2012;1(4):154–66.
- 26. Ng C, et al. A review on microstructural study and compressive strength of geopolymer mortar, paste and concrete. Constr Build Mater. 2018;186:550–76.
- 27. Bernal SA, et al. Characterization of supplementary cementitious materials by thermal analysis. J Sustain Cem-Based Mater. 2017;50(1):1–13.
- 28. Gunasekara C, et al. Effect of element distribution on strength in fly ash geopolymers. ACI Mater J. 2017;114(5):795.
- 29. Hamdan H, et al. 29Si MAS NMR, XRD and FESEM studies of rice husk silica for the synthesis of zeolites. J Non-Cryst Solids. 1997;211(1):126–31.
- 30. Duxson P, et al. Geopolymer technology: the current state of the art. J Mater Sci. 2007;42(9):2917–33.
- 31. Park S, Pour-Ghaz M. What is the role of water in the geopolymerization of metakaolin? Constr Build Mater. 2018;182:360–70.
- 32. Jamkar S, Ghugal Y, Patankar S. Effect of fly ash fineness on workability and compressive strength of geopolymer concrete. The Indian Concr J. 2013;87(4):57–62.
- 33. Tennakoon C, et al. Distribution of oxides in fly ash controls strength evolution of geopolymers. Constr Build Mater. 2014;71:72–82.
- 34. Gunasekara C, Setunge S, Law DW. Long-term mechanical properties of different fly ash geopolymers. ACI Struct J. 2017;114(3):743–52.
- 35. Provis JL, van Deventer JSJ. Geopolymerisation kinetics. 1. In situ energy-dispersive X-ray diffractometry. Chem Eng Sci. 2007;62(9):2309–17.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4018fc3d-b802-4d7e-ae01-846db378d521