Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
DOI
Warianty tytułu
Języki publikacji
Abstrakty
In the context of spaces of homogeneous type, we develop a method to deterministically construct dyadic grids, specifically adapted to a given combinatorial situation. This method is used to estimate vector-valued operators rearranging martingale difference sequences such as the Haar system.
Wydawca
Rocznik
Tom
Strony
139--159
Opis fizyczny
Bibliogr. 17 poz.
Twórcy
autor
- Institute of Analysis Johannes Kepler University Linz Altenberger Strasse 69 A-4040 Linz, Austria
autor
- Institute of Analysis Johannes Kepler University Linz Altenberger Strasse 69 A-4040 Linz, Austria
Bibliografia
- [1] S. Y. A. Chang, J. M. Wilson, and T. H. Wolff, Some weighted norm inequalities concerning the Schrödinger operators, Comment. Math. Helv. 60 (1985), 217–246.
- [2] M. Christ, A T(b) theorem with remarks on analytic capacity and the Cauchy integral, Colloq. Math. 60/61 (1990), 601–628.
- [3] G. David, Wavelets and Singular Integrals on Curves and Surfaces, Lecture Notes in Math. 1465, Springer, Berlin, 1991.
- [4] B. Davis, Hardy spaces and rearrangements, Trans. Amer. Math. Soc. 261 (1980), 211–233.
- [5] T. Figiel, On equivalence of some bases to the Haar system in spaces of vector-valued functions, Bull. Polish Acad. Sci. Math. 36 (1988), 119–131.
- [6] T. Figiel, Singular integral operators: a martingale approach, in: Geometry of Banach spaces (Strobl, 1989), London Math. Soc. Lecture Note Ser. 158, Cambridge Univ. Press, Cambridge, 1990, 95–110.
- [7] J. B. Garnett and P. W. Jones, BMO from dyadic BMO, Pacific J. Math. 99 (1982), 351–371.
- [8] T. P. Hytönen, Vector-valued singular integrals revisited—with random dyadic cubes, Bull. Polish Acad. Sci. Math. 60 (2012), 269–283.
- [9] R. Lechner, An interpolatory estimate for the UMD-valued directional Haar projection, Dissertationes Math. 503 (2014), 60 pp.
- [10] R. Lechner, The one-third-trick and shift operators, Bull. Polish Acad. Sci. Math. 61 (2013), 219–238.
- [11] J. Lee, P. F. X. Müller, and S. Müller, Compensated compactness, separately convex functions and interpolatory estimates between Riesz transforms and Haar projections, Comm. Partial Differential Equations 36 (2011), 547–601.
- [12] R. A. Macías and C. Segovia, Lipschitz functions on spaces of homogeneous type, Adv. Math. 33 (1979), 257–270.
- [13] P. F. X. Müller and M. Passenbrunner, A decomposition theorem for singular integral operators on spaces of homogeneous type, J. Funct. Anal. 262 (2012), 1427–1465.
- [14] S. Müller, Rank-one convexity implies quasiconvexity on diagonal matrices, Int. Math. Res. Notices 1999, 1087–1095.
- [15] F. Nazarov, S. Treil, and A. Volberg, Cauchy integral and Calderón–Zygmund operators on nonhomogeneous spaces, Int. Math. Res. Notices 1997, 703–726.
- [16] F. Nazarov, S. Treil, and A. Volberg, The Tb-theorem on non-homogeneous spaces, Acta Math. 190 (2003), 151–239.
- [17] T. H. Wolff, Two algebras of bounded functions, Duke Math. J. 49 (1982), 321–328.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4011337a-2bdf-46ab-89ff-6fae89ca6edc