PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Adaptive Deterministic Dyadic Grids on Spaces of Homogeneous Type

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the context of spaces of homogeneous type, we develop a method to deterministically construct dyadic grids, specifically adapted to a given combinatorial situation. This method is used to estimate vector-valued operators rearranging martingale difference sequences such as the Haar system.
Rocznik
Strony
139--159
Opis fizyczny
Bibliogr. 17 poz.
Twórcy
autor
  • Institute of Analysis Johannes Kepler University Linz Altenberger Strasse 69 A-4040 Linz, Austria
  • Institute of Analysis Johannes Kepler University Linz Altenberger Strasse 69 A-4040 Linz, Austria
Bibliografia
  • [1] S. Y. A. Chang, J. M. Wilson, and T. H. Wolff, Some weighted norm inequalities concerning the Schrödinger operators, Comment. Math. Helv. 60 (1985), 217–246.
  • [2] M. Christ, A T(b) theorem with remarks on analytic capacity and the Cauchy integral, Colloq. Math. 60/61 (1990), 601–628.
  • [3] G. David, Wavelets and Singular Integrals on Curves and Surfaces, Lecture Notes in Math. 1465, Springer, Berlin, 1991.
  • [4] B. Davis, Hardy spaces and rearrangements, Trans. Amer. Math. Soc. 261 (1980), 211–233.
  • [5] T. Figiel, On equivalence of some bases to the Haar system in spaces of vector-valued functions, Bull. Polish Acad. Sci. Math. 36 (1988), 119–131.
  • [6] T. Figiel, Singular integral operators: a martingale approach, in: Geometry of Banach spaces (Strobl, 1989), London Math. Soc. Lecture Note Ser. 158, Cambridge Univ. Press, Cambridge, 1990, 95–110.
  • [7] J. B. Garnett and P. W. Jones, BMO from dyadic BMO, Pacific J. Math. 99 (1982), 351–371.
  • [8] T. P. Hytönen, Vector-valued singular integrals revisited—with random dyadic cubes, Bull. Polish Acad. Sci. Math. 60 (2012), 269–283.
  • [9] R. Lechner, An interpolatory estimate for the UMD-valued directional Haar projection, Dissertationes Math. 503 (2014), 60 pp.
  • [10] R. Lechner, The one-third-trick and shift operators, Bull. Polish Acad. Sci. Math. 61 (2013), 219–238.
  • [11] J. Lee, P. F. X. Müller, and S. Müller, Compensated compactness, separately convex functions and interpolatory estimates between Riesz transforms and Haar projections, Comm. Partial Differential Equations 36 (2011), 547–601.
  • [12] R. A. Macías and C. Segovia, Lipschitz functions on spaces of homogeneous type, Adv. Math. 33 (1979), 257–270.
  • [13] P. F. X. Müller and M. Passenbrunner, A decomposition theorem for singular integral operators on spaces of homogeneous type, J. Funct. Anal. 262 (2012), 1427–1465.
  • [14] S. Müller, Rank-one convexity implies quasiconvexity on diagonal matrices, Int. Math. Res. Notices 1999, 1087–1095.
  • [15] F. Nazarov, S. Treil, and A. Volberg, Cauchy integral and Calderón–Zygmund operators on nonhomogeneous spaces, Int. Math. Res. Notices 1997, 703–726.
  • [16] F. Nazarov, S. Treil, and A. Volberg, The Tb-theorem on non-homogeneous spaces, Acta Math. 190 (2003), 151–239.
  • [17] T. H. Wolff, Two algebras of bounded functions, Duke Math. J. 49 (1982), 321–328.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4011337a-2bdf-46ab-89ff-6fae89ca6edc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.