PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Properties of polyurethane fibrous materials produced by solution blow spinning

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The study aimed to produce nano- and microfibrous materials from polyurethane (ChronoFlex®C75A/ C75D in 1,1,1,3,3,3–hexafluoro–2–propanol) by solution blow spinning. Experiments were carried out in order to determine the impact of solution blow spinning parameters on fibre diameter and quality of produced materials. The following properties of produced fibre scaffolds were investigated: fibre size, porosity and pore size, wettability, and mechanical properties. The results confirmed that produced nano- and microfibrous materials could be potentially used as scaffolds in three-dimensional cell and tissue cultures.
Rocznik
Strony
267–--276
Opis fizyczny
Bibliogr. 22 poz., tys., tab.
Twórcy
  • Warsaw University of Technology, Faculty of Chemical and Process Engineering, Waryńskiego 1, 00-645 Warsaw, Poland
  • Warsaw University of Technology, Faculty of Chemical and Process Engineering, Waryńskiego 1, 00-645 Warsaw, Poland
  • Warsaw University of Technology, Faculty of Chemical and Process Engineering, Waryńskiego 1, 00-645 Warsaw, Poland
Bibliografia
  • 1. ASTM D638 – 02a – Standard Test Method for Tensile Properties of Plastics.
  • 2. Behrens A.M., Casey B.J., Sikorski M.J., Wu M.J., Tutak K.L., Sandler A.D., Kofinas P., 2014. In situ deposition of PLGA nanofibres via solution blow spinning. ASC Macro Letters, 3, 249–254. DOI: 10.1021/mz500049x.
  • 3. Bhattacharya M., Malinen M.M., Lauren P., Lou Y., Kuisma S.W., Kanninen L., Lille M., Corlu A., GuGuen-Guillouzo C., Ikkala O., Laukkanen A., Urtti A., Yliperttul M., 2013. Nanofibrillar cellulose hydrogel promotes three-dimensional liver cell culture. J. Controlled Release, 164, 291–298. DOI: 10.1016/j.jconrel.2012.06.039.
  • 4. Borden M., Attawia M., Khan Y., Laurencin C.T., 2002. Tissue engineered microsphere – based matrices for bone repair, design and evaluation. Biomaterials, 23, 551–559. DOI: 10.1016/S0142-9612(01)00137-5.
  • 5. Chanjuan D., Yonggang L.V., 2016. Application of collagen scaffold in tissue engineering: Recent advances and new perspectives. Polymers, 8, 42–56. DOI: 10.3390/polym8020042.
  • 6. Edmondson R., Broglie J.J., Adcock A.F., Yang L., 2014. Three-dimensional cell culture systems and their appli-cations in drug discovery and cell-based biosensors. ASSAY Drug Dev. Technol. 12(3), 207–218. DOI: 10.1089/adt.2014.573.
  • 7. Eichhorn S.J., Sampson W.W., 2005. Statistical geometry of pores and statistics of porous nanofibrous assemblies. J. R. Soc. Interface, 2, 309–318. DOI: 10.1098/rsif.2005.0039.
  • 8. Hutmacher D.W., Woodfield T.B.F., Dalton P.D., 2015. Scaffold Design and Fabrication. In: van Blitterswijk C., De Boer J. (Eds.), Tissue Engineering. 2nd edition, Academic Press, 311–346.
  • 9. Indong J., Han H. S., Edwards J. R., Jeon H., 2018. Electrospun Fibrous Scaffolds for Tissue Engineering: Viewpoints on Architecture and Fabrication. Int. J. Mol. Sci., 19, 745. DOI: 10.3390/ijms19030745.
  • 10. Kim J.B., 2005. Three-dimensional tissue culture models in cancer biology. Semin. Cancer Biol., 365–377. DOI: 10.1016/j.semcancer.2005.05.002.
  • 11. Kitel J., Czarnecka J.,Rusin A., 2013. Trojwymiarowe hodowle komorek – zastosowaniawbadaniach podstawowych i inżynierii tkankowej. Post˛epy Biochemii, 59, 305–321.
  • 12. Khan F., Tare R.S., Oreffo R.O. C., Bradley M., 2009. Versatile biocompatible polymer hydrogels: Scaffolds for cell growth. Angew. Chem. Int. Ed., 48, 978–982. DOI: 10.1002/anie.200804096.
  • 13. Kurzydłowski K., Lewandowska M., 2010. Nanomateriały inżynierskie konstrukcyjne i funkcjonalne.Wydawnictwo Naukowe PWN, 256–284.
  • 14. Padsalgikar A.D., 2017. Plastics in medical devices for cardiovascular applications. William Andrew, Elsevier Inc., United Kingdom, 64. DOI: 10.1016/B978-0-323-35885-9.00003-5.
  • 15. Safinia L., Datan N., Hohse M., Mantalaris A., Bismarck A., 2005. Towards a methodology for the effective Surface modification of porous polymer scaffolds. Biomaterials, 26, 7537–547.
  • 16. Singh M.R., Patel S., Singh D., 2016. Natural polymer-based hydrogels as scaffolds for tissue engineering, In: Grumezescu A.M. (Ed.), Nanobiomaterials in soft tissue engineering. Applications of Nanobiomaterials Volume 5.
  • 17. William Andrew Applied Science Publishers. 231–260. DOI: 10.1016/B978-0-323-42865-1.00009-X.
  • 18. Subbiah T., Bhat G.S., Tock R.W., Parameswaran S., Ramkumar S.S., 2005. Electrospinning of nanofibers. J. Appl. Polym. Sci., 96, 557–569. DOI: 10.1002/app.21481.
  • 19. Schindelin J., Arganda–Carreas Frise E., Kaynig V., Lingair M., Pierzsch T., Preibisch S., Rueden C., Saalfeld S.,
  • 20. Schmdt B., Tinevez J., White D.J., Hartenstein V., Eliceiri K., Tomancak P., Cardona A., 2012. Fiji: an open-source platform for biological-image analysis. Nature Methods, 28, 676–682. DOI: 10.1038/nmeth.2019.
  • 21. Theocharis A.D., Skandalis S.S., Gialeli C., Karamanos N.K., 2016. Extracellular matrix structure. Adv. Drug Delivery Rev., 97, 4–27. DOI: 10.1016/j.addr.2015.11.001.
  • 22. Yamamoto M., Rafii S., Rabbany S. Y., 2014. Scaffold biomaterials for nano-pathophysiology. Adv. Drug Delivery Rev., 74, 104–114. DOI: 10.1016/j.addr.2013.09.009.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-400e47a1-2552-404e-a48b-31470105745b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.