PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Waste Plant Material as a Potential Adsorbent of a Selected Azo Dye

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper discusses the adsorption of Direct Orange 26 azo dye on sunflower husk - an agricultural waste product. During the study, sorption kinetics and equilibrium as well as sorption capacity of the husk were investigated. The adsorption kinetics was analyzed using pseudo-first and pseudo-second order equations, which indicated a chemical sorption mechanism. The sorption equilibrium was approximated with the two-parameter Freundlich and Langmuir equations and the three-parameter Redlich-Peterson equation. The main experiments were carried out in a laboratory adsorption column under different process conditions. Experimental data were interpreted with the Thomas model, based on the volumetric flow rate, initial composition of the feed solution and mass of the adsorbent. The results of modeling the adsorption equilibrium, adsorption kinetics and adsorption dynamics were evaluated statistically.
Rocznik
Strony
283--294
Opis fizyczny
Bibliogr. 39 poz., tab., wykr.
Twórcy
autor
  • Lodz University of Technology, Faculty of Process and Environmental Engineering, 90-924 Łódź, Wólczańska 213, Poland
autor
  • Lodz University of Technology, Faculty of Process and Environmental Engineering, 90-924 Łódź, Wólczańska 213, Poland
Bibliografia
  • 1. Allen S.J., Koumanova B., 2003. Decolourisation of water/wastewater using adsorption. J. Univ. Chem. Technol. Metallurgy. 40, 175–192.
  • 2. Avdicevic M.Z., Kosutic K., Dobrovic S. 2017. Effect of operating conditions on the performances of multichannel ceramic UF membranes for textile mercerization wastewater treatment. Environ. Technol., 38, 65-77. DOI: 10.1080/09593330.2016.1186225.
  • 3. Babu B.V., Gupta S., 2005. Modelling and simulation of fixed bed adsorption column: effect of velocity variation. J. Eng. Techn., 1, 60-66. DOI: 10.1016/30923-4748(05)00044-05.
  • 4. Borges G.A., Silva L.P., Penido J.A., de Lemos L.R., Mageste A.B., Rodrigues G.D. 2016. A method for dye extraction using an aqueous two-phase system: Effect of co-occurrence of contaminants in textile industry wastewater. J. Environ. Manage., 183, 196-203. DOI: 10.1016/j.jenvman.2016.08.056.
  • 5. Chen J.P., Yoon J.T., Yiadoumi S., 2003. Effects of chemical and physical properties of influence on copper sorption onto activated carbon fixe-bed columns. Carbon, 41, 1635-1644. DOI: 10.1016/S0008-6223(03)00117-9.
  • 6. Crini G., 2006. Non-conventional low-cost adsorbents for dye removal: a review. Bioresour. Technol. 97, 1061-85. DOI: 10.1016/j.biortech.2005.05.001.
  • 7. Gala A., Sanak-Rydlewska S., 2010. Sorpcja jonów metali toksycznych z roztworów wodnych na odpadach naturalnych – przegląd literaturowy. Górnictwo i Geoinżynieria, 4(1), 49-59.
  • 8. Garba A., Nasri N.S., Basri H., Ismail R., Majid Z.A., Hamza U.D., Mohammed J., 2016, Adsorptive removal of phenol from aqueous solution on a modified palm shell-based carbon: fixed-bed adsorption studies. Desalin. Wat. Treat., 57, 29488-29499. DOI: 10.1080/19443994.2016.1184187.
  • 9. Ghribi A., Chlendi M., 2011. Modeling of fixed bed adsorption: Application to the adsorption of an organic dye. Asian J. Textile, 1, 161-171. DOI: 10.3923/ajt.2011.161.171.
  • 10. Hameed B.H., Ahmad A.A., 2009. Batch adsorption of methylene blue from aqueous solution by garlic peel, an agricultural waste biomass. J. Hazard. Mat., 164, 870-875. DOI: 10.1016/j.jhazmat.2008.08.084.
  • 11. Ho Y.S., 2006. Second-order kinetic model for the sorption of cadmium onto tree fern: A comparison of linear and non-linear methods. Wat. Res., 40, 119-125. DOI:10.1016/j.watres.2005.10.040.
  • 12. Ho Y.S., Wang C.C., 2004. Pseudo-isotherms for the sorption of cadmium ion onto tree fern. Proc. Biochem., 39, 761-765. DOI:10.1016/S0032-9592(03)00184-5.
  • 13. Jain M., Garga V.K., Kadirvelub K., 2009. Chromium(VI) removal from aqueous system using Helianthus annuus (sunflower) stem waste. J. Haz. Mat., 162(1), 365-372. DOI: 10.1016/j.jhazmat.2008.05.048.
  • 14. Lambrecht R., Barros M.A.S.D., Arroyo P.A., Borba C.E., Silva E. A., 2015. Adsorption of the dye reactive blue 5g in retorted shale. Braz. J. Chem. Eng. 32, 269 - 281. DOI: 10.1590/0104-6632.20150321s00001715.
  • 15. Leja K., Lewandowicz G., Grejek W., 2009. Produkcja bioetanolu z surowców celulozowych. Biotechnologia, 4(87), 88-101.
  • 16. Kocadagistan B., Kocadagistan E., 2016. Batch and column removal of the dye blue 3R over pumice. Desalin.
  • 17. Wat. Treat., 57, 28042-28055. DOI: 10.1080/19443994.2016.1184186.
  • 18. Kotrba P., Mackova M., Urbánek V. (Eds.), 2011. Microbial biosorption of metals. Springer Science+Business Media B.V. DOI: 10.1007/978-94-007-0443-5.
  • 19. Mahendra Ch., Anand Babu, Satyasai P.M., K.K. Rajan. 2015. Application of the Thomas model for cesium ion exchange on AMP-PAN, In: Shirish Sonawan, Y. Pyde Setty, Srinu Nayak S. (Eds.), Chemical and Bioprocess Engineering: Trends and Developments. Chapter: 18. CRC press - A Taylor and Francis Group. DOI: 10.13140/2.1.3833.8561.
  • 20. Mustafa Y.A., Ebrahim S.E., 2010. Utilization of Thomas model to predict the breakthrough curves for adsorption and ion exchange, J. Eng., 4(16), 6206-6223.
  • 21. Muthamilselvi P., Karthikeyan R., Kumar B.S.M. 2016. Adsorption of phenol onto garlic peel: Optimization, kinetics, isotherm, and thermodynamic studies. Desalin. Water Treat., 57, 2089–2103. DOI: 10.1080/19443994.2014.979237.
  • 22. Nassar M.M., El‐Geundi M.S. 1991. Comparative cost of colour removal from textile effluents using natural adsorbents. J. Chem. Technol. Biotechnol., 50(2), 257-264. DOI: 10.1002/jctb.280500210.
  • 23. Oguntimein G.B., Duwane T., 2014. The potential use of acid treated dried sunflower seed hull as a biosorbent for the removal of textile effluent dye from aqueous solution. Res. Inventy: Int. J. Eng. Sci., 4(7), 21-30.
  • 24. Oguntimein G.B. 2016. Textile dye removal using dried sun flower seed hull a new low cost biosorbent: equilibrium, kinetics and thermodynamic studies. Adv. Res. Text Eng., 1(1), 1008-1014.
  • 25. Osma J.F., Saravia V., Toca-Herrera J.L., Rodriguez Couto S., 2007. Sunflower seed shells: A novel and effective low-cost adsorbent for the removal of the diazo dye Reactive Black 5 from aqueous solutions. J. Haz. Mat., 147, 900-905. DOI: 10.1016/j.jhazmat.2007.01.112.
  • 26. Piyo N., 2014. Liquefaction of sunflower husks for biochar production, Master degree dissertation, North-West University, South Africa.
  • 27. Priya R., Nithya R., Anuradha R., Kamachi T., 2014. Removal of colour from crystal violet dye using low cost adsorbents. Int. J. Chem. Tech. Res., 6(9), 4346-4351.
  • 28. Sateu D., Malutan T., Bilba D., 2011. Agricultural waste corn cob as a sorbent for removing reactive dye Orange 16: Equilibrium and kinetic study. Cellulose Chem. Technol., 45(5-6), 413-420.
  • 29. Sočo E., Kalembkiewicz J., 2016. Comparison of adsorption of Cd(II) and Pb(II) ions on pure and chemically modified fly ashes. Chem. Proc. Eng., 37(2), 215-234. DOI: 10.1515/cpe-2016-0018.
  • 30. Soldatkina L. M. , Sagaidak E. V., Menchuk V. V., 2009. Adsorption of cationic dyes from aqueous solutions on sunflower husk. J. Wat. Chem. Technol., 31, 238-243. DOI: 10.3103/S1063455X09040055.
  • 31. Srinivasan A., Viraraghavan T., 2010. Oil removal from water using biomaterials. Biores. Technol., 101, 6594– 6600. DOI: 10.1016/j.biortech.2010.03.079.
  • 32. Sud D., Mahajan G., Kaur M.P., 2008. Agricultural waste material as potential adsorbent for sequestering heavy metal ions from aqueous solutions - A review. Biores. Technol., 99, 6017-6027. DOI: 10.1016/j.biortech.2007.11.064.
  • 33. Tomczak E., 2013. Water purification from heavy metal ions in a packed column. Sep. Sci. Technol., 48, 2270- 2276. DOI: 10.1080/01496395.2013.805224.
  • 34. Tomczak E., Kamiński W., Tosik P., 2015. Adsorption dynamics studies of azo dyes removal by biosorbent. Desalin. Wat. Treat. 55, 2669–2674. DOI: 10.1080/19443994.2014.939490.
  • 35. Tomczak E., Tosik P., 2014, Sorption equilibrium of azo dyes Direct Orange 26 and Reactive Blue 81 onto a cheap plant sorbent. Ecol. Chem. Eng S, 21, 435-445. DOI: 10.2478/eces-2014-0032.
  • 36. Volesky B., 2007. Biosorption and me. Wat. Res., 41, 4017-4029. DOI: 10.1016/j.watres.2007.05.062.
  • 37. Witek-Krowiak A., 2012. Analysis of temperature-dependent biosorption of Cu2+ ions on sunflower hulls: Kinetics, equilibrium and mechanism of the process. Chem. Eng. J., 192, 13-20. DOI: 10.1016/j.cej.2012.03.075.
  • 38. Xu Zhe, Cai Jian-guo, Pan Bing-cai. 2013. Mathematically modeling fixed-bed adsorption in aqueous systems. Appl. Phys. Eng., 14(3), 155-176. DOI: 10.1631/jzus.A1300029.
  • 39. Yasmen A.M., Shahlaa E.E., 2010. Utilization of Thomas model to predict the breakthrough curves for adsorption and ion exchange. J. Eng., 16(4), 6206-6223.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-400bcb93-a9a4-45c7-84e6-a1a295e47b22
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.