Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper presents the results of a study on the influence of the temperature of characteristic zones of coal combustion in a stoker fired boiler (drying, degassing, and burn-out), on changes in physical and chemical parameters of bituminous coal and slags. This information is important as it helps identify the impact of coal properties on the accumulation of trace elements, primarily mercury, in combustion waste. The study is the continuation of research work on the impact of mercury compounds accumulated in combustion waste on the natural environment (mercury from landfills of slag, and fly ash). Studies were undertaken because no in-depth analysis of the impact of the temperature of particular zones of stoker fired boilers on the physical and chemical parameters of the post-process slag, including mercury content, had been reported in literature. Both of the coals examined, classified as bituminous coal according to the International Classification of Seam Coals and of type 32.1 according to the PN-G97002:1982 standard, showed an average mercury content of 0.0849 mg/g. In the chemical composition determined for the ash derived from burnt coal, the dominance of SiO2 and Al2O3 over other oxides was found. This feature results in the increase of the softening temperature and ash melting and, therefore, during the combustion of coal tested in a stoker fired boiler, only ash was subjected to the sintering process. Mercury content in the other examined samples taken from various locations of the stoker fired boiler (drying – 32-1050 ºC, degassing – 1050-1020 ºC, and burn-out – 1020-400 ºC) varied from 0.0668 to 0.0009 mg/g and was determined with the use of a LECO atomic absorption spectrometer. The analyses of the elemental composition, performed with the application of XRF spectrometry, for ash obtained from samples collected from different sampling points of the stoker fired boiler showed that the largest concentration of trace elements was observed for the ash derived from the samples collected in the degassing zone (temperature range 1050-850 ºC).
Wydawca
Czasopismo
Rocznik
Tom
Strony
66--72
Opis fizyczny
Bibliogr. 42 poz.
Twórcy
autor
- Department of Solid Fuels Quality Assessment, Central Mining Institute, Katowice, Poland
autor
- Department of Solid Fuels Quality Assessment, Central Mining Institute, Katowice, Poland
Bibliografia
- 1. Ali, J., Kazi, T. G., Afridi, H. I., Baig, J. A., Arain, M. S., Naeemullah, et al. (2016). The evaluation of sequentially extracted mercury fractions in Thar coal samples by using different extraction schemes. International Journal of Coal Geology, 156, 50-58.
- 2. Ali, J., Tuzen, M., & Kazi, T. G. (2016). Determination of mercury in environmental samples by using water exchangeable liquid-liquid microextraction as green extraction method couple with cold vapor technique. Water, Air and Soil Pollution, 227(170), 1-12.
- 3. ATSDR. (2015). Agency for toxic substances and Disease Registry, priority list of hazardous substances. Retrieved December 21, 2015, from http://www.atsdr.cdc.gov/SPL/index.html.
- 4. Dziok, T., Strugała, A., Rozwadowski, A., Macherzyński, A., & Ziomber, S. (2015). Mercury in waste products from hard coal processing plants. Mineral Resources Management, 31(1), 107-122.
- 5. Dziok, T., Strugała, A., Rozwadowski, A., & Okońska, A. (2014). Effect of selected parameters of thermal pretreatment of bituminous coal on the mercury removal efficiency. Przemysł Chemiczny, 93(12), 2034-2037.
- 6. Feng, X., Sommar, J., Lindqvist, O., & Hong, Y. (2002). Occurrence, emissions and deposition of mercury during coal combustion in the province Guizhou, China. Water, Air and Soil Pollution, 139, 311-324.
- 7. Glodek, A., & Pacyna, J. M. (2009). Mercury emission from coal-fired power plants in Poland. Atmospheric Environment, 43, 5668-5673.
- 8. Gostomczyk, M. A., Jędrusik, M., & Świerczok, A. (2010). Ograniczenie emisji rtęci z procesów spalania węgla [Reducing mercury emissions from the processes of coal combustion]. Wrocław: Politechnika Wrocławska, Instytut Techniki Cieplnej i Mechaniki Płynów.
- 9. Hamala, K., & Róg, L. (2004). Wpływ składu chemicznego i właściwości fizykochemicznych węgli oraz ich popiołów na wskaźniki żużlowania i zanieczyszczania powierzchni grzewczych kotłów [Influence of chemical composition and physical and mechanical properties of coal and its ashes on slagging indicators and pollution of the heating surface of boilers]. Prace Naukowe GIG. Górnictwo i Środowisko, (3), 81-109.
- 10. Hower, J. C., Eble, C. F., & Quick, J. C. (2005). Mercury in Eastern Kentucky coals: Geologic aspects and possible reduction strategies. International Journal of Coal Geology, 62, 223-236.
- 11. Hławiczka, S., & Fudala, J. (2008). Assessment of atmospheric mercury emission reduction measures relevant for application in Poland. Environmental Engineering Science, 25(2), 163-171.
- 12. Hławiczka, S., Kubica, K., & Zielonka, U. (2003). Partitioning factor of mercury during coal combustion in low capacity domestic heating units. Science of the Total Environment, 312, 261-265.
- 13. International Classification of Seam Coals. (1995). Final Version: Economic commission for Europe, committee on energy, working party on coal (Fifth Session, Genève).
- 14. International Energy Outlook. (2013). Energy information administration office of integrated analysis U.S.Washington: Department of Energy. Retrieved December 21, 2015, from www.eia.doe.gov/oiaf/ieo/index.html.
- 15. Jasieńka, S. (1995). Chemia i fizyka węgla [Chemistry and physics of coal]. Wrocław: Politechnika Wrocławska.
- 16. Karolczuk, H. (1998). Racjonalna gospodarka węglem energetycznym [Rational management of steam coal]. Warszawa: Wydawnictwa Naukowo-Techniczne.
- 17. Ketris, M. P., & Yudovich, Ya E. (2009). Estimations of Clarkes for Carbonaceous boplithes: World averages for trace element contents in black shales and coals. International Journal of Coal Geology, 78, 135-148.
- 18. Klojzy-Karczmarczyk, B., & Mazurek, J. (2014). Study of mercury and Sulphur content in the waste from a disused coal mine waste heap. Energy Policy Journal, 17(4), 289-302.
- 19. Kostova, I. J., Hower, J. C., Mastalerz, M., & Vassilev, S. V. (2011). Mercury capture by selected Bulgarian fly ashes: Influence of coal rank and fly ash carbon pore structure on capture efficiency. Applied Geochemistry, 26, 18-27.
- 20. Kruczek, S. (2001). Kotły. Konstrukcje i obliczenia [Boilers. Structures and calculations]. Wrocław: Oficyna Wydawnicza Politechniki Wrocławskiej.
- 21. Mercedes Maroto-Valer, M., Zhang, Y., Granite, E. J., Tang, Z., & Pennline, H. W. (2005). Effect of porous structure and Surface functionality on the mercury capacity of a fly ash carbon and its activated sample. Fuel, 84, 105-108.
- 22. Niedźwiecki, E., Meller, E., Malinowski, R., & Sammel, A. (2007). Zanieczyszczenie środowiska glebowego metalami ciężkimi przez niekontrolowane wysypiska odpadów [Soil pollution with heavy metals by uncontrolled waste dump sites]. Ochrona Środowiska i Zasobów Naturalnych, 31, 126-130.
- 23. Nowak, J. (2014). The influence of thermal transformation of coal mining wastes on their petrographic and mineralogical composition. Mineral Resources Management, 30(1), 143-160.
- 24. Okulski, T. (2007). Porównanie zawartości rtęci w węglach polskich i amerykańskich [Comparison of mercury content in Polish and US coals]. Energy Policy Journal, 2(10), 603-611.
- 25. Pacyna, E. G., Pacyna, J. M., Sundseth, K., Munthe, J., Kindbom, K., Wilson, S., et al. (2010). Global emission of mercury to the atmosphere from anthropogenic sources in 2005 and projections to 2020. Atmospheric Environment, 44, 2487-2499.
- 26. Polish Geological Institute. (2015). Surowce Mineralne Polski [Mineral resources of Poland]. Retrieved December 21, 2015, from http://geoportal.pgi.gov.pl/surowce/energetyczne/wegiel_kamienny.
- 27. Róg, L. (1998). Mikroskopowa ocena form występowania siarki pirytowej w węglach Górnośląskiego Zagłębia Węglowego [Microscopic evaluation of forms of occurrence of pyritic sulfur in coals from the Upper Silesian Coal Basin]. In XXXV Materials Physochemical Problems of Mineral Processing Seminar (pp. 127-133). Wrocław: Oficyna Wydawnicza Politechniki Wrocławskiej.
- 28. Róg, L. (2003). Wpływ budowy petrograficznej i chemicznej węgla kamiennego na temperaturę topliwości popiołu [Effects of petrographic and chemical structure of coal on the fusion temperature of ash]. Prace Naukowe GIG, Górnictwo i Środowisko, 1, 73-96.
- 29. Roga, B. (1954). Węgiel kamienny. Przeróbka i użytkowanie [Hard coal. Processing and use]. Stalinogród: Państwowe Wydawnictwa Techniczne.
- 30. Rompalski, P., Smoliński, A., Krztoń, H., Gazdowicz, J., Howaniec, N., & Róg, L. (2016). Determination of mercury content in hard coal and fly ash using X-ray diffraction and scanning electron microscopy coupled with chemical analysis. Arabian Journal of Chemistry. http://dx.doi.org/10.1016/j.arabjc.2016.02.016 (in press).
- 31. Smoliński, A. (2007). Energetyczne wykorzystanie węgla jako źródło emisji rtęci. Porównanie zawartości Hg w wybranych polskich węglach z zawartością tego metalu w węglach na świecie [Utilization of coal for energy purposes as a source of mercury emissions. Comparison of Hg content in selected Polish coals with the content of this metal in world coals]. Ochrona Powietrza i Problemy Odpadów, 2(238), 45-53.
- 32. Smoliński, A. (2011). Coal char reactivity as a fuel selection criterion for coal-based hydrogen-rich gas production in the process of steam gasification. Energy Conversion and Management, 52, 37-45.
- 33. Sushil, S., & Batra, V. S. (2006). Analysis of fly ash heavy metal content and disposal in three thermal power plants in India. Fuel, 85, 2676-2679.
- 34. Szlęk, A. (2008). Wstępna oceny wpływu recyrkulacji powietrza podmuchowego na pracę kotła rusztowego [A preliminary assessment of the impact of blast air recirculation on the operation of stoker fired boiler]. Nowoczesne Ciepłownictwo, 07(190), 22-26.
- 35. UNEP. (2013). Global mercury assessment 2013: Sources, emissions, releases and environmental transport. Geneva, Switzerland: UNEP Chemicals Branch.
- 36. Vejahati, F., Xu, Z., & Gupta, R. (2010). Trace elements in coal: Associations with coal and minerals and their behavior during coal utilization e A review. Fuel, 89, 904-911.
- 37. Wichliński, M., Kobyłecki, R., & Bis, Z. (2011). Emisja rtęci podczas termicznej obróbki paliwa [Emission of mercury during the thermal treatment of fuels]. Energy Policy Journal, 2(14), 191-202.
- 38. Wichliński, M., Kobyłecki, R., & Bis, Z. (2012). Review of methods to limit mercury emissions during combustion of solid fuels in power plants. Energy Policy Journal, 15(4), 151-160.
- 39. Yudovich, Ya. E., & Ketris, M. P. (2005a). Merkury in coal: A review Part 1. Geochemistry. International Journal of Coal Geology, 62, 107-134.
- 40. Yudovich, Ya. E., & Ketris, M. P. (2005b). Merkury in coal: A review Part 2. Coal use and environmental problems. International Journal of Coal Geology, 62, 135-165.
- 41. Zarzycki, R., & Wichliński, M. (2014). The concept of process for limiting mercury emissions from coal combustion in fluidized bed boilers. Energy Policy Journal, 17(4), 303-316.
- 42. Zhang, J., Zhao, Y., Ding, F., Zeng, H., & Zheng, C. H. (2007). Preliminary study of trace element emissions and control during coal combustion. Frontiers of Energy and Power Engineering in China, 1(3), 273-279.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-400ac691-9887-4670-ba69-d966bbe06ca5