PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Natural Isotopes and Ion Compositions Identify Changes in Groundwater Flows Affecting Wetland Vegetation in the Drentsche Aa Brook Valley, The Netherlands

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study uses groundwater isotopes and ion composition to verify model simulations and ecohydrological studies in the Drentsche Aa nature reserve in The Netherlands, which is representative for the northwestern wetland areas in the Ice Marginal Landscape zone. At eight field sites, a total of 24 samples were analysed for their 13C, 14C, 2H, and 18O isotopes and ionic composition. The isotopes indicate that most of the fen peatlands in the area depend on the exfiltration of sub-regional groundwater flows, which confirmed the previous model simulations and ecohydrological studies. At three sites, isotopes and ionic composition indicate that the groundwater from the sub-regional system has been replaced by local infiltrated rainwater, due to nearby groundwater abstractions for drinking water, which influenced the success rates of the restoration measures. Furthermore, the evidence from chloride and 14C contents was found to indicate the presence of more saline groundwater, which are influenced by the groundwater flows near salt diapirs. Groundwater abstractions may enhance the upward flow of the saline groundwater to eventually exfiltrate at the wetlands, affecting the biodiversity of the nature reserve.
Rocznik
Strony
112--125
Opis fizyczny
Bibliogr. 37 poz., rys., tab.
Twórcy
  • Centre for Energy and Environmental Studies, University of Groningen, The Netherlands
  • Centre for Isotope Research, University of Groningen, The Netherlands
autor
  • Province of Drenthe, The Netherlands
  • Physical Geography Department, University of Utrecht, The Netherlands
autor
  • Copernicus Institute of Sustainable Development, University of Utrecht, The Netherlands
autor
  • Centre for Energy and Environmental Studies, University of Groningen, The Netherlands
  • Institute of Water and Wetland Research, Radboud University Nijmegen, The Netherlands
Bibliografia
  • 1. Appelo C.A.J., Postma D. 2005. Geochemistry, Groundwater and Pollution (2nd ed.). Amsterdam.
  • 2. Bakker J.P., Dekker M., & De Vries Y. 1980. The effect of different management practices on a grassland community and the resulting fate of seedlings. Acta Botanica Neerlandica 29, 469–482.
  • 3. Bakker J.P., Everts H., Grootjans A.P., De Vries N.P.J., De Vries Y. 2015. The big experiment – Fifty years of Nature Management. In: Spek, T., Elerie H., Bakker, J.P., Noordhoff, I. (eds.), Landscape biogeography of the Drentsche Aa (pp. 418–461). Koninklijke Van Gorcum BV, Assen. (In Dutch)
  • 4. Bregman E.P.H., Maas G., Makaske B., & Meyles E, 2015. Formed by Ice, Water and Wind In: Spek T, Elerie H, Bakker JP, Noordhoff I (eds): Landscape biogeaography of the Drentsche Aa, pp. 18–53. Van Gorcum, Assen. (In Dutch)
  • 5. Clark I., & Aravena R. 2005. Environmental Isotopes in Ground Water Resource and Contaminant Hydrogeology. National Ground Water Agency, US.
  • 6. Dahl M., Nilsson B., Langhoff J.H., Refsgaard J.C. 2007. Review of classification systems and new multi-scale typology of groundwater-surface water interaction. Journal of Hydrology 344, 1–16.
  • 7. De Gans W. 2007. Quaternary. In: Wong TE, Batjes DAJ, De Jager J (eds.), Geology of the Netherlands (pp. 173–195). Royal Netherlands Academy of Arts and Sciences, Amsterdam.
  • 8. Diersch H., & Kolditz O. 1998. Coupled groundwater flow and transport: 2. Thermohaline and 3D convection systems. Advances in Water Resources 1708, 401–425.
  • 9. DINOLOKET (2014). Retrieved October 15, 2014, from https://www.dinoloket.nl/
  • 10. Everts F.H. & de Vries N.P.J. 1991. De vegetatieontwikkeling van beekdalsystemen. Proefschrift Rijksuniversiteit Groningen/Historische uitgeverij Groningen.
  • 11. Gat J.R. 1996. Oxygen and hydrogen isotopes in the hydrologic cycle. Earth and Planetary Science 24, 225–262.
  • 12. Geyh M. 2000. An overview of 14C analysis in the study of groundwater. Radiocarbon 42, 99–114.
  • 13. Gibson J. J., Edwards T.W.D., Birks S.J., St Amour N.A., Buhay W.M., McEachern P., & Peters D.L. 2005. Progress in isotope tracer hydrology in Canada. Hydrological Processes, 19(1), 303–327.
  • 14. Gilvear D.J., & Bradley C. 2009. Hydrological Dynamics II: Groundwater and Hydrological Connectivity. In: Maltby, E. & Barker, T. (eds.): The Wetlands Handbook (pp. 169–193). Wiley-Blackwell Publishing, Chichester.
  • 15. Grootjans A.P., Van Diggelen R., Everts F.H., Schipper P.C., Streefkerk, J., De Vries N.P.J., & Wierda A. 1993. Linking ecological patterns to hydrological conditions on various spatial scales: a case study of small stream valleys. In: Vos, C.C., & Opdam, P. (eds.): Landscape Ecology of a Stressed Environment (pp. 60–78). Chapman and Hall, London.
  • 16. IAEA/WMO 2017. Global Network of Isotopes in Precipitation. The GNIP Database. Accessible at: http://www.iaea.org/water
  • 17. Isokangas E., Rossi, P.M., Ronkanen A.-K., Marttila H., Rozanski K. & Kløve B. 2017. Quantifying spatial groundwater dependence in peatlands through a distributed isotope mass balance approach. Water Resour. Res., 53, 2524–2541.
  • 18. Kassambara A. 2017. Practical Guide to Principal Component Methods in R. Accessible at: www.Sthda.com.
  • 19. Magri F., & Bregman E.P.H. 2011. Regional-scale numerical model of coupled fluid flow and mass transport along a deep geological profile in the Drenthe area, The Netherlands. Final Report of the Demo Pilot Project. Geowissenschaften Institut für Geologische Wissenschaften, Berlin.
  • 20. Mayer A., Sültenfuß J., Travi Y., Rebeix R., Purtschert R., Claude C., & Conchetto E. 2014. A multi-tracer study of groundwater origin and transit-time in the aquifers of the Venice region (Italy). Applied Geochemistry 50, 177–198. http://doi.org/10.1016/j.apgeochem.2013.10.009
  • 21. Meijer H.A.J. 2009. Stable isotope quality assurance using the “calibrated IRMS” strategy. Isotopes in Environmental and Health Studies 45, 150–163.
  • 22. Mendizabal I., & Stuyfzand P. 2009. Guidelines for interpreting hydrochemical patterns in data from public supply well fields and their value for natural background groundwater quality determination. Journal of Hydrology 379(1–2), 151–163.
  • 23. Mendizabal I., Stuyfzand P. & Wiersma A. 2011. Hydrochemical system analysis of public supply well fields, to reveal water-quality patterns and define groundwater bodies: The Netherlands. Hydrogeology Journal 19, 83–100.
  • 24. Mook W.G. 2006. Introduction to Isotope Hydrology. International Association of Hydrogeologists, Vienna.
  • 25. Province of Drenthe 1995. Research on the dynamic behaviour of groundwater systems. Report (in Dutch). Province of Drenthe, Assen.
  • 26. Schot P.P., & Van der Wal J. 1992. Human impact on regional groundwater composition through intervention in natural flow patterns and changes in land use. Journal of Hydrology 134, 297–313.
  • 27. Schot P.P., & Wassen M.J. 1993. Calcium concentrations in wetland groundwater in relation to water sources and soil conditions in the recharge area. Journal of Hydrology 141, 197–217.
  • 28. Smit F.W.H., Magri F., Bregman E.P.H. 2018. Coupling earth surface processes and geological structures to explain environmental features as observed onshore Northern Netherlands. SEG conference 2018 paper (accepted).
  • 29. Tamers M.A. 1975. The validity of radiocarbon dates on groundwater. Geophysical Survey 2, 217–239.
  • 30. Tóth J. 1963. A theoretical analysis of groundwater flow in small drainage basins. Journal of Geophysical Research 68, 4795–4812.
  • 31. Van Diggelen R., Grootjans, A.P., & Burkunk, R. 1994. Assessing restoration perspectives of disturbed brook valleys: the Gorecht area, The Netherlands. Restoration Ecology 2, 87–96.
  • 32. Van Diggelen R., Beukema H., & Noorman K.J. 1995. Ranunculus hederaceus L. as indicator of land use changes in the Netherlands. Acta Botanica Neerlandica 44, 161–175.
  • 33. Van Loon A.H., Schot P.P., Griffioen J., Bierkens M.F.P., Batelaan O., Wassen M.J. 2009. Throughflow as a determining factor for habitat contiguity in a near-natural fen. Journal of Hydrology 379, 30–40.
  • 34. Vogel J.C. 1970. Carbon-14 dating of groundwater. In: Isotope Hydrology, Proceedings of a symposium. (pp. 225–236). Vienna: International Atomic Energy Association.
  • 35. De Vries J.J. (2007). Groundwater. In: Wong, T.E., Batjes, D.A.J. & De Jager, J. (eds.), Geology of The Netherlands. Royal Netherlands Academy of Arts and Sciences (pp. 295–315), Amsterdam.
  • 36. Wassen M.J., Barendregt A., Palczynski A., De Smidt J.T., & De Mars H. 1990. The relationship between fen vegetation gradients; groundwater flow and flooding in an undrained valley mire at Biebrza, Poland. Journal of Ecology 78, 1106–1122.
  • 37. Wheeler B.D., & Shaw S.C. 1995. Plants as Hydrologists? An assessment of the value of plants as indicators of water conditions in fens. In: Hughes M.R., Heathwaite A.L. (eds.), Hydrology and Hydrochemistry of British Wetlands (pp. 63–82). West Sussex: John Wiley.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-400a042c-996c-4d9e-84a6-6fdeb49fc575
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.