Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
We show for n,m≥1 and {u1,…,un,v1,…,vm}⊆ω∗ that Cp(⨁ni=1ωui) and Cp(⨁mi=1ωvi) are linearly homeomorphic if and only if n=m and there is a permutation π:{1,…,n}→{1,…,n} such that for every i≤n, ωui and ωvπ(i) are homeomorphic. This generalizes a result by Gul'ko. We will also show that for n,m≥1, {u1,…,un}⊆ω∗ and countable spaces Y1,…,Yn with only one non-isolated point, if Cp(⨁ni=1ωui) and Cp(⨁mi=1Yi) are linearly homeomorphic, then m≤n. Moreover, m=n if and only if each Yi is homeomorphic to ωvi for some vi∈ω∗.https://www.msn.com/pl-pl/feed
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
63--82
Opis fizyczny
Bibliogr. 20 poz.
Twórcy
autor
- 971 Bukit Timah Road, 06-22 Floridian, 589647 Singapore
Bibliografia
- [1] A. V. Arhangel’skii, On linear homeomorphisms of function spaces, Soviet Math. Dokl. 25 (1982), 852-855.
- [2] A. V. Arhangel’skii, Topological Function Spaces, Math. Appl. 78, Kluwer, Dordrecht, 1992.
- [3] J. Baars and J. de Groot, On topological and linear equivalence of certain function spaces, CWI Tracts 86, Centre for Mathematics and Computer Science, Amsterdam, 1992.
- [4] J. Baars and J. de Groot, On the l-equivalence of metric spaces, Fund. Math. 137 (1991), 25-43.
- [5] J. Baars, J. de Groot, J. van Mill and J. Pelant, On topological and linear homeomorphisms of certain function spaces, Topology Appl. 32 (1989), 267-277.
- [6] J. Baars and J. van Mill, Function spaces and points in Čech-Stone remainders, submitted.
- [7] R. Cauty, La classe Borélienne ne détermine pas le type topologique de Cp(X), Serdica Math. J. 24 (1998), 307-318.
- [8] W. W. Comfort and S. Negrepontis, The Theory of Ultrafilters, Grundlehren Math. Wiss. 211, Springer, Berlin, 1974.
- [9] T. Dobrowolski, S. P. Gul’ko and J. Mogilski, Function spaces homeomorphic to the countable countable product of l2f , Topology Appl. 34 (1990), 153-160.
- [10] T. Dobrowolski, W. Marciszewski and J. Mogilski, On topological classification of function spaces of low Borel complexity, Trans. Amer. Math. Soc. 328 (1991), 307-324.
- [11] S. P. Gul’ko, Spaces of continuous functions on ordinals and ultrafilters, Math. Notes 47 (1990), 329-334.
- [12] M. Hasumi, A continuous selection theorem for extremally disconnected spaces, Math. Ann. 179 (1969), 83-89.
- [13] M. Katětov, A theorem on mappings, Comment. Math. Univ. Carolin. 8 (1967), 431- 433.
- [14] W. Marciszewski, On analytic and coanalytic function spaces Cp(X), Topology Appl. 50 (1993), 241-248.
- [15] J. van Mill, An introduction to βω, in: Handbook of Set-Theoretic Topology, K. Kunen and J. E. Vaughan (eds.), North-Holland, Amsterdam, 1984, 503-567.
- [16] J. van Mill, The Infinite-Dimensional Topology of Function Spaces, North Holland Math. Library 64, North-Holland, 2001.
- [17] V. V. Tkachuk, A Cp-Theory Problem Book: Topological and Function Spaces, Problem Books in Math., Springer, 2011.
- [18] V. V. Tkachuk, A Cp-Theory Problem Book: Special Features of Function Spaces, Problem Books in Math., Springer, 2014.
- [19] V. V. Tkachuk, A Cp-Theory Problem Book: Compactness in Function Spaces, Problem Books in Math., Springer, 2015.
- [20] V. V. Tkachuk, A Cp-Theory Problem Book: Functional Equivalencies, Problem Books in Math., Springer, 2016.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-400311ac-2001-4afe-ae67-7abcf03c8524