PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Discrete interpolation based on the area of possible location of the evolute of a monotone curve

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Methods for geometric modelling of curves with a given set of properties interpolating point series of complex configuration form the foundation for developing computer-aided design systems for products bounded by functional surfaces. The key characteristics of the interpolating curve, which ensure the necessary surface properties, include a regular change in curvature values and a minimum number of singular points. The article aims to develop a method for generating a sequence consisting of an arbitrarily large number of specified reference points and assigned intermediate points, which can be interpolated by a monotone curve. The positions of intermediate points are determined based on the pre-assigned properties of the interpolating curve, including the positions of normals and curvature values. The correctness of the solutions proposed in the article is validated through the resolution of a test example. The method developed in the paper is a crucial step towards solving the problem of forming a contour that represents, with given accuracy, a curve with specified properties, interpolating a point series of arbitrary configuration.
Twórcy
  • Department of Computer Sciences, Dmytro Motornyi Tavria State Agrotechnological University, 66 Zhukovskyi Str., 69600 Zaporizhzhia, Ukraine
  • Department of Engineering Mechanics and Computer Design, Dmytro Motornyi Tavria State Agrotechnological University, 66 Zhukovskyi Str., 69600 Zaporizhzhia, Ukraine
autor
  • Department of Electrical Engineering and Electromechanics named after Prof. V.V. Ovharov, Dmytro Motornyi Tavria State Agrotechnological University, 66 Zhukovskyi Str., 69600 Zaporizhzhia, Ukraine
autor
  • Department of Foreign Languages, Dmytro Motornyi Tavria State Agrotechnological University, 66 Zhukovskyi Str., 69600 Zaporizhzhia, Ukraine
  • Department of Electricity Supply and Energy Management, State Biotechnological University, 61052 Kharkiv, Ukraine
autor
  • Department of Agricultural Engineering State Biotechnological University, Kharkiv, Ukraine, Faculty of Transport and Computer Science, WSEI, Lublin, Poland
  • Institute of Design and Engineering Technologies, Faculty of Engineering, Slovak University of Agriculture in Nitra, Nitra, Slovakia
  • Department of Renewable Energy Sources Engineering and Technical Systems, Faculty of Mechanical Engineering, Bydgoszcz University of Science and Technology, Al. Prof. S. Kaliskiego 7, 85-796 Bydgoszcz, Poland
  • Department of Renewable Energy Sources Engineering and Technical Systems, Faculty of Mechanical Engineering, Bydgoszcz University of Science and Technology, Al. Prof. S. Kaliskiego 7, 85-796 Bydgoszcz, Poland
  • Department of Renewable Energy Sources Engineering and Technical Systems, Faculty of Mechanical Engineering, Bydgoszcz University of Science and Technology, Al. Prof. S. Kaliskiego 7, 85-796 Bydgoszcz, Poland
Bibliografia
  • 1. Okaniwa, S.; Nasri, A.; Lin, H.; Abbas, A.; Kineri, Y.; Maekawa, T. Uniform B-Spline Curve Interpolation with Prescribed Tangent and Curvature Vectors. IEEE Trans. Vis. Comput. Graph. 2016, 18, 1474–1487. https://doi.org/10.1109/TVCG.2011.262.
  • 2. Werghi, N.; Fisher, R.; Robertson, C.; Ashbrook, A. Object reconstruction by incorporating geometric constraints in reverse engineering. Comput. Aided Des. 1999, 31, 363–399. https://doi.org/10.1016/S0010-4485(99)00038-X.
  • 3. Cai, C.; Yang, Y.; Jia, Y.; Wu, G.; Zhang, H.; Yuan, F.; Qian, Q.; Li, Q. Aerodynamic load evaluation of leading edge and trailing edge windward states of large-scale wind turbine blade under parked condition. Appl. Energy 2023, 350, 121744. https://doi.org/10.1016/j.apenergy.2023.121744.
  • 4. Fooladi, M.; Foroud A.A. Recognition and assessment of different factors which affect flicker in wind turbine. IET Renew. Power Gener. 2015, 1, 250–259. http://doi.org/10.1049/iet-rpg.2014.0419.
  • 5. Hudym, V., Kosovska, V., Al_Issa, H., Shchur, T., Miroshnyk, O., Ziarkowski, S. Change of frequency characteristics of a filter using a reactor with smoothly adjustable inductance. Informatyka, Automatyka, Pomiary W Gospodarce I Ochronie Środowiska, 2024, 14(2), 28–33. https://doi.org/10.35784/iapgos.5810.
  • 6. Hashemian, A.; Imani, B.M. A new quality appearance evaluation technique for automotive bodies, including the effect of flexible parts tolerances. Mech. Based Des. Struct. Mach. 2018, 46, 157–167. https://doi.org/10.1080/15397734.2017.1321487.
  • 7. Mo, W.; Li, D.; Wang, X.; Zhong, C. Aeroelastic coupling analysis of the flexible blade of a wind turbine. Energy 2015, 89, 1001–1009. https://doi.org/10.1016/j.energy.2015.06.046.
  • 8. Badariyah, N.; Latip, A.; Omar, R. Feasible Path Generation Using Bezier Curves for Car-Like Vehicle. IOP Conf. Ser.: Mater. Sci. Eng. 2017, 226, 012133. https://doi.org/10.1088/1757-899X/226/1/012133.
  • 9. Hewett, D.P.; Ockendon, J.R.; Smyshlyaev, V.P. Contour integral solution of the parabolic wave equation. Wave Motion 2019, 84, 90–109. https://doi.org/10.1016/j.wavemoti.2018.09.015.
  • 10. Hashemian, A.; Hosseini, S.F. An integrated fitting and fairing approach for object reconstruction using smooth NURBS curves and surfaces. Comput. Math. with Appl. 2018, 76(7), 1555–1575. http://doi.org/10.1016/j.camwa.2018.07.007.
  • 11. Hoschek, J.; Müller, R. Turbine blade design by lofted B-spline surfaces. J. Comput. Appl. Math. 2000, 119(1–2), 235–248. https://doi.org/10.1016/S0377-0427(00)00381-2.
  • 12. Lezhenkin, O.M.; Halko, S.V.; Miroshnyk, O.O.; Vershkov, O.O.; Suprun, O.M.; Shchur, T.G.; Kruszelnicka, W.; Kasner, R. Investigation of the separation of combed heap of winter wheat. J. Phys. Conf. Ser. 2021, 1781(1), 012016. https://doi.org/10.1088/1742-6596/1781/1/012016.
  • 13. Tabor, S.; Lezhenkin, A.; Halko, S.; Miroshnyk, A.; Kovalyshyn, S.; Vershkov, A.; Hryhorenko, O. Mathematical simulation of separating work tool technological process. E3S Web of Conferences. 2019, 132, 01025. https://doi.org/10.1051/e3sconf/201913201025.
  • 14. Li, W.; Xu, S.; Zheng, J.; Zhao, G. Target curvature driven fairing algorithm for planar cubic B-spline curves. Comput. Aided Geom. Des. 2004, 21, 499–513. https://doi.org/10.1016/j.cagd.2004.03.004.
  • 15. Massarwi, F.; Elber, G. A B-spline based framework for volumetric object modeling. Comput. Aided Des. 2016, 78, 36–47. https://doi.org/10.1016/j.cad.2016.05.003.
  • 16. Havrylenko, Y.; Cortez, J.I.; Kholodniak, Y.; Alieksieieva, H.; Garcia, G.T. Modelling of surfaces of engineering products on the basis of array of points. Teh. Vjesn. 2020, 27(6), 2034–2043. https://doi.org/10.17559/TV-20190720081227.
  • 17. Havrylenko, Y.; Kholodniak, Y.; Vershkov, O.; Naidysh A. Development of the method for the formation of one-dimensional contours by the assigned interpolation accuracy. East.-Eur. J. Enterp. Technol. 2018, 1(4(91)), 76–82. http://doi.org/10.15587/1729-4061.2018.123921.
  • 18. Tymchuk, S.; Piskarev, O.; Miroshnyk, O.; Halko, S.; Shchur, T. Expansion of the area of practical application of the plc control system with parallel architecture. Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Srodowiska, 2022, 12(3), 16–19. http://doi.org/10.35784/iapgos.2983.
  • 19. Havrylenko, Y.; Kholodniak, Y.; Halko, S.; Vershkov, O.; Miroshnyk, O.; Suprun, O.; Dereza, O.; Shchur, T.; Śrutek, M. Representation of a monotone curve by a contour with regular change in curvature. Entropy 2021, 23(7), 923. http://doi.org/10.3390/e23070923.
  • 20. Kholodniak, Y.; Havrylenko, Y.; Halko, S.; Hnatushenko, V.; Suprun, O.; Volina, T.; Miroshnyk, O.; Shchur, T. Improvement of the algorithm for setting the characteristics of interpolation monotone curve. Informatyka, Automatyka, Pomiary W Gospodarce I Ochronie Środowiska 2023, 13(4), 44–50. https://doi.org/10.35784/iapgos.5392.
  • 21. Robbin, J.W.; Salomon, D.A. Introduction to Differential Geometry. Springer Spektrum: Zürich, Switzerland, 2022; 432.
  • 22. Shen, W.; Wang, G.; Huang, F. Direction monotonicity of a rational Bézier curve. Appl. Math. 2016, 31, 1–20. https://doi.org/10.1007/s11766-016-3399-7.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3ff93690-c3b3-45e6-b680-0815c320d5ed
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.