Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Badanie porównawcze między sterownikami PID o ułamkowym i ułamkowym porządku do sterowania stabilnym systemem w oparciu o algorytm optymalizacji roju cząstek
Języki publikacji
Abstrakty
Most industrial applications use integer-order proportional integral derivative (IOPID) controllers due to well-known characteristics such as simplicity and ease of implementation. However, because of their nonlinear nature and the underlying iso-damping feature of fractional-order operators, fractional-order PID (FOPID) and fractionalized-order PID (FrOPID) controllers outperform the IOPID controllers. In this study, three different controllers based on particle swarm optimization are used to regulate a stable system. While a FrOPID controller only has to optimize four parameters and a normal PID controller only needs to optimize three parameters, a FOPID controller requires the optimization of five parameters. Set-point tracking, and better disturbance rejection are obtained with the fractional PID controller, whereas fractionalized PID outperforms the other controllers in terms of noise attenuation.
Większość aplikacji przemysłowych wykorzystuje regulatory IOPID rzędu liczb całkowitych ze względu na dobrze znane cechy, takie jak prostota i łatwość implementacji. Jednak ze względu na ich nieliniowy charakter i leżącą u ich podstaw funkcję izo-tłumienia operatorów ułamkowego rzędu, regulatory PID ułamkowego rzędu (FOPID) i PID ułamkowego rzędu (FrOPID) przewyższają regulatory IOPID. W tym badaniu trzy różne kontrolery oparte na optymalizacji roju cząstek są używane do regulacji stabilnego systemu. Podczas gdy regulator FrOPID musi zoptymalizować tylko cztery parametry, a normalny regulator PID tylko trzy parametry, regulator FOPID wymaga optymalizacji pięciu parametrów. Śledzenie wartości zadanej i lepsze tłumienie zakłóceń uzyskuje się za pomocą ułamkowego regulatora PID, podczas gdy ułamkowy PID przewyższa inne regulatory pod względem tłumienia szumów.
Wydawca
Czasopismo
Rocznik
Tom
Strony
87--90
Opis fizyczny
Bibliogr. 26 poz., rys., tab.
Twórcy
autor
- Electrical Engineering Department, Mohamed Boudiaf University of M’sila - Algeria
- Applied Automation Laboratory, F.H.C., University of Boumerdes, 35000 Boumerdes, Algeria
autor
- Electrical Engineering Department, Mohamed Boudiaf University of M’sila - Algeria
autor
- CNRS, LAPLACE UMR 5213 Toulouse, France
Bibliografia
- [1] Minorsky N., “Directional Stability of Automatically Steered Bodies, ” Naval Engineers Journal , (1922),vol.34, no.2, pp.284.
- [2] Bennett S., "Nicholas Minorsky and the automatic steering of ships," IEEE Control Systems Magazine, (1984), vol.4, no.4, pp.10-15.
- [3] Bennett S., "The past of PID controllers," Annual Reviews in Control, (2001), vol. 25, pp. 43–53.
- [4] Xue Y., Zhao H. & Yang Q., "Self-tuning of PID parameters based on the modified particle swarm optimization," In 2006 4th IEEE International Conference on Industrial Informatics, (2006), pp. 870–873.
- [5] Idir A., Kidouche M., Bensafia Y., Khettab K., Tadjer S.A., “Speed control of DC motor using PID and FOPID controllers based on differential evolution and PSO”, Int. J. Intell. Eng. Syst., (2018), vol.11, no.3, pp. 241–249.
- [6] Aboelhassan A., Abdelgeliel M., Zakzouk EE., Galea M., "Design and Implementation of Model Predictive Control Based PID Controller for Industrial Applications. Energies," (2020), vol. 13, no.24, pp. 1–22.
- [7] Lu K. D., Zeng G. Q., & Zhou W., "Adaptive constrained population extremal optimisation-based robust proportional-integral-derivation frequency control method for an islanded microgrid," IET Cyber-Systems and Robotics, (2021), vol.3, no.3, pp. 210-227.
- [8] Sharma R., Rana K.P.S, Kumar V., "Performance analysis of fractional order fuzzy PID controllers applied to a robotic manipulator," Expert Syst Appl. (2014), vol.4, no.4, pp. 4274– 4289.
- [9] Zhang, B. and Pi, Y., 2012. Design of Fractional Order Sliding Mode Controller Based on Parameters Tuning. Przeglad Elektrotechniczny, 88(10A), pp. 172-175.
- [10] Idir A., Bensafia Y., Khettab K., "Design of an Optimally Tuned Fractionalized PID Controller for DC Motor Speed Control Via a Henry Gas Solubility Optimization Algorithm", Int. J. Intell. Eng. Syst., (2022), vol.15, pp. 59–70.
- [11] Liu L., Zhang L., Pan G., & Zhang S., "Robust yaw control of autonomous underwater vehicle based on fractional-order PID controller," Ocean Engineering, (2022), vol. 257, pp. 111493.
- [12] Ullah N ., Wang S., Khattak M., “Fractional Order Fuzzy Backstepping Torque Control of Electrical Load Simulator”, Przegląd Elektrotechniczny, 89 (2013),nr. 5, 237-240.
- [13] Idir A., Canale L., Tadjer S. A., Chekired F., "High Order Approximation of Fractional PID Controller based on Grey Wolf Optimization for DC Motor,". 2022 IEEE International Conference on Environment and Electrical Engineering and 2022 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe), Jun 2022, Prague, Czech Republic. pp.1–6.
- [14] Stanisławski R., Rydel M., & Li Z., "A new reduced-order implementation of discrete-time fractional-order pid controller", IEEE Access, (2022), vol.10, pp. 17417–17429.
- [15] Idir A., Canale L., Bensafia Y., Khettab, K. “Design and Robust Performance Analysis of Low-Order Approximation of Fractional PID Controller Based on an IABC Algorithm for an Automatic Voltage Regulator System”, Energies, (2022), vol. 15, 8973.
- [16] Bitao Z., Yougou P., “Integration of Fuzzy and Sliding Mode Control Based on Fractional Calculus Theory for Permanent Magnet Synchronous Motor.”, Przeglad Elektrotechniczny., 2011, vol. 87 (11), pp. 251-255.
- [17] Bensafia Y., Khettab K., Idir A.,“An Improved Robust Fractionalized PID Controller for a Class of Fractional-Order Systems with Measurement Noise”, International Journal of Intelligent Engineering and Systems, (2018), vol.11, no.2, pp. 200–207.
- [18] ]Włodarczyk M., Zawadzki A, Różowicz S. Fractional models of selected combustion engine ignitron systems. Przegląd Elektrotechniczny; (2016), vol. 4, pp. 30-33.
- [19] Dey S., Banerjee S. & Dey J., "Practical Application of Fractional-Order PID Controller based on Evolutionary Optimization Approach for a Magnetic Levitation System," IETE Journal of Research, (2022), pp. 1-25.
- [20] Bensafia Y., Idir A., Khettab K., Akhtar M. S., Zahra S., “Novel Robust Control Using a Fractional Adaptive PID Regulator for an unstable system”, Indonesian Journal of Electrical Engineering and Informatics (IJEEI), (2022), 10 (4), 847-855.
- [21] Kumar N., Alotaibi M. A., Singh A., Malik H., & Nassar M.E., "Application of Fractional Order-PID Control Scheme in Automatic Generation Control of a Deregulated Power System in the Presence of SMES Unit," Mathematics, (2022), vol. 10, no.3, pp. 521.
- [22] Ruszewski, A., & Sobolewski, A. (2012). Comparative studies of control systems with fractional controllers. Przegląd Elektrotechniczny, 88(4b), 204-208.
- [23] Bensafia Y., Khettab K., Idir A., "A Novel Fractionalized PID controller Using The Sub-optimal Approximation of FOTF," Algerian Journal of Signals and Systems, (2022), vol.7, no.1, pp. 21–26.
- [24] Lu K. D. & Wu Z. G., "Genetic algorithm-based cumulative sum method for jamming attack detection of cyber-physical power systems", IEEE Transactions on Instrumentation and Measurement, (2022), vol.71, pp. 1–10.
- [25] Lu K., Zhou W., Zeng G. & Zheng Y., "Constrained population extremal optimization-based robust load frequency control of multi-area interconnected power system," International Journal of Electrical Power & Energy Systems, (2019), vol.105, pp. 249–271, 2019.
- [26] Mohamed, M. J., & Khashan, A. (2014). Comparison Between PID and FOPID Controllers Based on Particle Swarm Optimization. In The Second Engineering Conference of Control, Computers and Mechatronics Engineering ECCCM2.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki i promocja sportu (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3ff87817-2563-4a09-af1d-cfa31fa2da7e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.