Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The thermal energy demand during the production period in greenhouses is important for determining the production economics and feasibility studies to be carried out. This is because evaluating future investments in the greenhouse sector requires accurate estimates of energy demand and costs. For this purpose, the heat energy required in the greenhouse and the heating costs were calculated, taking into account the meteorological conditions of the region, the optimum temperature demand of the plants and the technical specifications of the greenhouse. Two different cover materials were used to determine the heat energy requirement: polyethylene sidewalls and roof (PE) and polycarbonate sidewalls + polyethylene roof (PC+PE). In addition, calculations were made for 8 different greenhouse combinations, including different insulation statuses (poor, medium and good insulation) of these greenhouses without thermal screen and with thermal screens. As a result of the study, it was calculated that the amount of energy consumed was reduced by 4.5% when PC covering material was used instead of PE covering material as covering material for the greenhouse side walls. In greenhouses covered with PE and PC+PE covers, if well-insulated thermal screens are used, the amount of energy consumed will decrease by 23.1%-22.4%, respectively, compared to PE and PC+PE greenhouses without thermal screens. Heating energy and fuel costs that can be saved with low heat transfer coefficient cover materials and well-insulated thermal screens could be reduced by 25.8%. The results of the study will guide greenhouse producers in regions with similar climates in determining the energy consumed, greenhouse design, investment evaluation and also greenhouse sector policies.
Czasopismo
Rocznik
Tom
Strony
77--92
Opis fizyczny
Bibliogr. 37 poz., tab.
Twórcy
autor
- Department of Biosystems Engineering Agriculture Faculty Kırşehir Ahi Evran University Kırşehir, Türkiye
autor
- Biosystems Engineering Institute of Natural and Applied Sciences Kırşehir Ahi Evran University Kırşehir, Türkiye
autor
- Biosystems Engineering Institute of Natural and Applied Sciences Kırşehir Ahi Evran University Kırşehir, Türkiye
autor
- Agriculture and Geothermal Project Coordination Kırşehir Ahi Evran University Kırşehir, Türkiye
Bibliografia
- 1. Adams, S.R., Cockshull, K.E., Cave, C.R.J. (2001). Effect of temperature on the growth and development of tomato fruits. Ann. Bot., 88: 869-877. DOI: 10.1006/anbo.2001.1524.
- 2. Ahamed, M.S., Guo, H., Tanino, K. (2019a). Energy saving techniques for reducing the heating cost of conventional greenhouses. Biosystems Engineering, 178: 9-33. DOI: 10.1016/j.biosystemseng.2018.10.017.
- 3. Ahamed, M.S., Guo, H., Taylor, L., Tanino, K. (2019b). Heating demand and economic feasibility analysis for year-round vegetable production in Canadian Prairies greenhouses. Information processing in Agriculture, 6, 81-90. DOI: 10.1016/j.inpa.2018.08.005.
- 4. Bursagaz (2024). Mayıs 2024 Yakıt karşılaştırma bilgileri. https://www.bursagaz.com/yakit-karsilastirma [access on-line: 15 June 2024].
- 5. Arinze, E.A., Schoenau, G.J., Besant, R.W. (1986). Experimental and computer performance evaluation of a movable thermal insulation for energy conservation in greenhouses. Journal of Agricultural Engineering Research, 34: 97-113.
- 6. Baytorun, A.N., Gügercin, Ö. (2015). Seralarda enerji verimliliğinin artırılması. Çukurova Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 30(2): 125-135. DOI: 10.21605/cukurovaummfd.242754.
- 7. Baytorun, A.N., Önder, D., Gügercin, Ö. (2016). Seraların ısıtılmasında kullanılan fosil ve jeotermal enerji kaynaklarının karşılaştırılması. Türk Tarım-Gıda Bilim ve Teknoloji Dergisi, 4(10): 832-839. DOI: 10.24925/turjaf.v4i10.832-839.863.
- 8. Baytorun, AN., Zaimoğlu, Z., Akyüz, A., Üstün, S., Çaylı, A. (2018). Comparison of greenhouse fuel consumption calculated using different methods with actual fuel consumption. Turkish Journal of Agriculture - Food Science and Technology, 6(7): 850-857.
- 9. Boyacı, S., Akyüz, A., Baytorun, A.N., Çaylı, A. (2016). Kırşehir ilinin örtü altı tarım potansiyelinin belirlenmesi. Nevşehir Bilim ve Teknoloji Dergisi 5(2): 142-157.
- 10. Boyacı, S. (2018). Kırşehir ve Antalya illeri için seralarin isi gereksiniminin belirlenmesi ve ısıtmada kullanılan enerji kaynaklarının karşılaştırılması. KSÜ Tar Doğa Derg 21(6) : 976-986, DOI: 10.18016/ksutarimdoga.vi.464627.
- 11. Boyacı, S., Atilgan, A., Kocięcka, J., Liberacki, D., Rolbiecki, R., Jagosz, B. (2023b). Determination of the effect of a thermal curtain used in a greenhouse on the indoor climate and energy savings. Energies, 16, 7744. DOI: 10.3390/en16237744.
- 12. Boyacı, S., Başpınar, A., Atilgan, A., Rolbiecki, R. (2023a). Determination of the Vertical Distribution Pattern of Indoor Climate Parameters in the Greenhouse Heated in the Winter Period. Rocznik Ochrona Środowiska, 25, 105-115. DOI: 10.54740/ros.2023.011.
- 13. Canakci, M., Emekli, Y., Bilgin, S., Caglayan, N. (2013). Heating requirement and its costs in greenhouse structures: A case study for Mediterranean region of Turkey. Renew. Sustain. Energy Rev., 24, 483-490. DOI: 10.1016/j.rser.2013.03.026.
- 14. Cola, G., Mariani, L., Toscano, S., Romano, D., Ferrante, A. (2020). Comparison of greenhouse energy requirements for rose cultivation in Europe and North Africa. Agronomy, 10, 422. DOI: 10.3390/agronomy10030422.
- 15. Critten, D.L., Bailey, B.J. (2002). A Review of greenhouse engineering developments during the 1990s. Agricultural and Forest Meteorology, 112: 1-22. DOI: 10.1016/S0168-1923(02)00057-6.
- 16. Dimitropoulou, A.M.N., Maroulis, V.Z., Giannini, E.N. (2023). A Simple and effective model for predicting the thermal energy requirements of greenhouses in Europe. Energies, 16: 6788. DOI: 10.3390/en16196788.
- 17. Ertop, H., Atilgan, A., Kocięcka, J., Krakowiak-Bal, A., Liberacki, D., Saltuk, B., Rolbiecki, R. (2023). Calculation of the potential biogas and electricity values of animal wastes: Turkey and Poland Case. Energies, 16: 7578. DOI: 10.3390/en16227578.
- 18. Giuliano V., Teitel M., Pardossi A., Minuto A., Tinivella F., Schettini, E. (2010). Sustainable Greenhouse Systems. Sustainable Agriculture. ISBN: 978-1-60876-269-9. Nova Science Publishers, Inc.
- 19. Heuvelink, E. (1995). Growth, development and yield of a tomato crop: periodic destructive measurements in a glasshouse. Sci. Hortic., 61, 77-99.
- 20. Le Quillec, S., Brajeul, E., Lesourd, D., Loda, D. (2005). Thermal screen evalution in soilless tomato crop under glasshouse. Acta Horticulturae, 691: 709-716. DOI: 10.17660/ActaHortic.2005.691.87.
- 21. Mariani, L., Cola, G., Bulgari, R., Ferrante, A., Martinetti, L. (2016). Space and time variability of heating requirements for greenhouse tomato production in the Euro-Mediterranean area. Sci. Total Environ., 562: 834-844. DOI: 10.1016/j.scitotenv.2016.04.057.
- 22. MGM (2024). Turkish State Meteorological Service. https://www.mgm.gov.tr/veridegerlendirme/il-ve-ilceler-istatistik.aspx?m=KIRSEHIR [access on-line: 15 June 2024].
- 23. Nisen, A., Grafiadellis, M., Jiménez, R., La Malfa, G., Martinez-Garcia, P.F., Monteiro, A., Verlodt, H., Villele, O., Zabeltitz,C.v., Denis, J.c., Baudoin,W., Garnaud, J.c., (1988). Cultures protegees en climat mediterranean. FAO, Rome.
- 24. Peet, M.M., Sato, S., Gardner, R.G. (1998). Comparing heat stress effects on male-fertile and male-sterile tomatoes. Plant Cell Environ. 21, 225-231. DOI: 10.1046/j.1365-3040.1998.00281.x.
- 25. Pressman, E., Peet, M.M., Pharr, D.M. (2002). The effect of heat stress on tomato pollen characteristics is associated with changes in carbohydrate concentration in the developing anthers. Ann. Bot., 90: 631-636. DOI: 10.1093/aob/mcf240.
- 26. Rasheed, A., Lee, J.W., Lee, H.W. (2017). Development of a model to calculate the overall heat transfer coefficient of greenhouse covers. Spanish Journal of Agricultural Research, 15(4): 1-11. DOI: 10.5424/sjar/2017154-10777.
- 27. Rasheed, A., Lee, J.W., Lee, H.W. (2018). Development and optimization of a building energy simulation model to study the effect of greenhouse design parameters. Energies, 11, 2001. DOI: 10.3390/en11082001.
- 28. Rath, T.H. (1992). Einsatz wissenbasierter Systeme zur Modellirung und Darstellung von Gartenbautechnischen Fachwissen am Beispiel des hybrieden Expertensystems HORTEX. Gartenbautechnische Informationen, Heft 34, Institut für Technik im Gartenbau der Universitat Hannover.
- 29. Saltuk, B. (2019). Energy efficiency of greenhouse tomato production in Turkey: A case of Siirt province. Fresenius Environmental Bulletin, 28(8): 6352-6357.
- 30. Saltuk, B., Mikail, N. (2019). Prediction of indoor temperature in a greenhouse: Siirt sample. Fresenius Environmental Bulletin, 28(4): 3577-3585.
- 31. Samaranayake, P., Liang, W., Chen, Z.H., Tissue, D., Lan, Y.C. (2020). Sustainable protected cropping: a case study of seasonal impacts on greenhouse energy consumption during capsicum production. Energies, 13, 4468. DOI: 10.3390/en13174468.
- 32. Sato, S., Peet, M.M., Thomas, J.F. (2000). Physiological factors limit fruit set of tomato (Lycopersicon esculentum Mill.) under chronic, mild heat stress. Plant Cell Environ., 23: 719-726. DOI: 10.1046/j.1365-3040.2000.00589.x.
- 33. Shen, Y., Wei, R., Xu, L. (2018). Energy consumption prediction of a greenhouse and optimization of daily average temperature. Energies, 11(65): 1-17. DOI: 10.3390/en11010065.
- 34. Tataraki, K., Giannini, E., Kavvadias, K., Maroulis, Z. (2020). Cogeneration economics for greenhouses in Europe. Energies, 13: 3373. DOI: 10.3390/en13133373.
- 35. Tezcan, A., Büyüktaş, K., (2013). Calculation of structural and heating costs in modern greenhouses. 5th International Conference TAE 2013 Trends in Agricultural Engineering, 3-6 September, Prag, Czech Republic, pp.607-611.
- 36. von Zabeltitz, C. (2011). Integrated Greenhouse Systems for Mild Climates: Climate Conditions, Design, Construction, Maintenance, Climate Control. Springer Heidelberg Dordrecht London New York. DOI: 10.1007/978-3-642-14582-7.
- 37. Vourdoubas, J. (2020). Creation of net zero carbon emissions agricultural greenhouses due to energy use in Mediterranean region; Is it Feasible?. Journal of Agriculture and Crops, 6(7): 89-95. DOI: 10.32861/jac.67.89.95.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3fee33d2-750a-4ddf-9c59-a1ca74a3877f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.