PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Indonesia's Natural Zeolite as an Adsorbent for Toxic Gases in Shrimp Ponds

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The objective of this research was to produce safe water for shrimp by using zeolite as adsorbent to absorb unwanted substances (NH3 and H2S). In particular, this study also aimed to design the shrimp pond water treatment equipment, effect of flow rate on zeolite ability to absorb toxic gases (NH3 and H2S), and rate of absorption (K) and reaction (k). The adsorbent is zeolite which has adsorption properties, high surface area and pores suitable for water (3Å). Then, the concentration of ammonia, hydrogen sulfide was analyzed using Ammonia Test Kit and Hydrogen Sulphide of Hach Hydrogen Sulfide Test Kit. The materials used in this study were zeolite of Malang (East Java, Indonesia) and shrimp pond water. The best result of NH3 and H2S adsorption obtained at a flow rate of 3 L•min-1. The best adsorption constant value (K) achieved by a flow rate of 3 L•min-1. On the basis of the best value of R2, NH3 and H2S adsorption, it can be classified in the first-order kinetic model with R2 of 0.9763 and a k value of 0.0007 hours-1 with a flow rate of 6 L•min-1. From the data above, it can be calculated that the adsorbent needed in the adsorption of NH3 and H2S in a scale shrimp pond requires 18 kg of Malang zeolite with a column height of 3.62 m of adsorbent, a diameter of 2.07 m, and a column volume of 12.21 m3.
Słowa kluczowe
Rocznik
Strony
202--208
Opis fizyczny
Bibliogr. 18 poz., rys., tab.
Twórcy
  • Chemical Engineering Department, Universitas Diponegoro, Semarang 50275, Indonesia
  • Chemical Engineering Department, Universitas Diponegoro, Semarang 50275, Indonesia
  • Chemical Engineering Department, Universitas Diponegoro, Semarang 50275, Indonesia
Bibliografia
  • 1. Aly, H.A., Rahim, M.M.A, Lotfy, A.M., Abdelaty, B.S., Sallam, G.R. 2016. The Applicability of Activated Carbon, Natural Zeolites, and Probiotics (EM®) and Its Effects on Ammonia Removal Efficiency and Fry Performance of European Seabass Dicentrarchus labrax. J Aquac Res Development. 7(11), 1–8. https://doi.org/10.4172/2155–9546.1000459.
  • 2. Anggoro, D.D., Buchori, L., Sumantri, I., Ivan, Sejati, D.A.B., Oktavianty, H. 2019. Utilization of Yogyakarta natural zeolites to reduce NH4 and NO2 levels in shrimp pond water and its kinetic rate study. IOP Conference Series: Materials Science and Engineering, 578(1), art. no. 012026. https://doi.org/10.1088/1757–899X/578/1/012026.
  • 3. Ariadi H., Fadjar, M., Mahmudi, M., Supriatna. 2019. The relationships between water quality parameters and the growth rate of white shrimp (Litopenaeus vannamei) in intensive ponds. AACL Bioflux, 12(6), 2103–2116.
  • 4. Ariffin N., Al Bakri Abdullah M.M., Zainol M.R.R.M.A. Murshed M.F., Zain, Faris M.A., Bayuaji, R. 2017. Review on Adsorption of Heavy Metal in Wastewater by Using Geopolymer. MATEC Web of Conferences. 97, 01023. https://doi.org/10.1051/matecconf/20179701023.
  • 5. Djaeni, M., Kurniasari, L.K., Sasongko, S.B., 2015. Preparation of natural zeolite for air dehumidification in food drying. Internat. J. Sci. Eng. 8(2), 83–84. https://doi.org/10.12777/ijse.8.2.80–83.
  • 6. Farizky, H.S., Satyantini, W.H., Nindarwi, D.D. 2020. The efficacy of probiotic with different storage to decrease the total organic matter, ammonia, and total Vibrio on shrimp pond water. IOP Conference Series: Earth and Environmental Science. 441(1), art. no. 012108. https://doi.org/10.1088/1755–1315/441/1/012108.
  • 7. Hudiyono, S., Handayani, S., Susilo, B. 2012. Esterification of glucose fatty acids of coconut oil catalyzed by Candida rugosa lipase EC 3.1.1.3 immobilized on an Indonesia’s natural zeolite matrix. World Applied Sciences Journal. 19(8), 1105–1111. https://doi.org/10.5829/idosi.wasj.2012.19.08.2065.
  • 8. Koyama, M., Nagao, N., Syukri, F., Rahim, A.A., Toda, T., Tran, Q.N.M., Nakasaki, K. 2020. Ammonia recovery and microbial community succession during thermophilic composting of shrimp pond sludge at different sludge properties. Journal of Cleaner Production. 251, art. no. 119718. https://doi.org/10.1016/j.jclepro.2019.119718.
  • 9. Król, M., Mozgawa, W., 2019. Zeolite layer on metakaolin-based support. Microporous and Mesoporous Materials. 282, 109–113. https://doi.org/10.1016/j.micromeso.2019.03.028.
  • 10. Kurniawan, T., Bahri, S., Diyanah, A., Milenia, N.D., Nuryoto, N., Faungnawakij, K., Thongratkaew, S., Bilad, M.R., Huda, N. 2020. Improving ammonium sorption of bayah natural zeolites by hydrothermal method. Processes. 8(12), art. no. 1569, 1–11. https://doi.org/10.3390/pr8121569.
  • 11. Kusuma, R.I., Hadinoto, J.P., Ayucitra, A., Soetaredjo, F.E., Ismadji, S. 2013. Natural zeolite from Pacitan Indonesia, as catalyst support for transesterification of palm oil. Applied Clay Science. 74, 121–126. https://doi.org/10.1016/j.clay.2012.04.021.
  • 12. Neolaka, Y.A.B., Kalla, E.B.S., Supriyanto, G., Suyanto, Puspaningsih, N.N.T. 2017. Adsorption of hexavalent chromium from aqueous solutions using acid activated of natural zeolite collected from ende-flores, Indonesia. Rasayan Journal of Chemistry. 10(2), 606–612. http://dx.doi.org/10.7324/RJC.2017.1021710.
  • 13. Neolaka, Y.A.B., Supriyanto, G., Kusuma, H.S. 2018. Adsorption performance of Cr(VI)-imprinted poly(4-VP-co-MMA) supported on activated Indonesia (Ende-Flores) natural zeolite structure for Cr(VI) removal from aqueous solution. Journal of Environmental Chemical Engineering. 6(2), 3436–3443. https://doi.org/10.1016/j.jece.2018.04.053.
  • 14. Rahman, M.Z., Uz Zaman, M.F., Khondoker, S., Uj-Jaman, M.H., Hossain, M.L., Bappa, S.B. 2015. Water quality assessment of a shrimp farm: A study in a salinity prone area of Bangladesh. International Journal of Fisheries and Aquatic Studies. 2(5), 9–19.
  • 15. Sumantri, I., Buchori, L., Mukti, F.A.W., Ramadhani, F., Anggoro, D.D. 2020. Study of the rate of adsorption of toxic gases in shrimp ponds using Sukabumi natural zeolite. AIP Conference Proceedings. 2197, art. no. 120005. https://doi.org/10.1063/1.5140962.
  • 16. Susetyaningsih, R., Suntoro, S., Gunawan, T., Sri Budiastuti, M.T. 2020. Impact of shrimp pond waste on water quality (case study of trisik lagoon in yogyakarta). AIP Conference Proceedings. 2296, art. no. 020050. https://doi.org/10.1063/5.0030551.
  • 17. Yulizar, Y., Kadja, G.T.M., Safaat, M. 2016. Wellexposed gold nanoclusters on Indonesia natural zeolite: a highly active and reusable catalyst for the reduction of p-nitrophenol. Reaction Kinetics, Mechanisms and Catalysis. 117(1), 353–363. https://doi.org/10.1007/s11144–015–0916–2.
  • 18. Zhang, Y., Yu, F., Cheng, W., Wang, J., Ma. J., 2017. Adsorption Equilibrium and Kinetics of the Removal of Ammoniacal Nitrogen by Zeolite X/Activated Carbon Composite Synthesized from Elutrilithe. Journal of Chemistry. Article ID 1936829, 9 pages. https://doi.org/10.1155/2017/1936829.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3feaa8bf-f755-45db-bb93-ab978851b12f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.