PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Preparation of α-calcium sulfate hemihydrate from industrial by-product gypsum: a review

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In recent years, the massive accumulation of industrial by-product gypsum, especially flue gas desulfurization (FGD) gypsum and phosphogypsum (PG), not only encroaches on lands but also causes serious environmental pollution. The preparation of α-calcium sulfate hemihydrate (α-HH) from industrial by-product gypsum is an important way to solve the massive accumulation. α-HH possessing larger, dense and well-grown crystals with fewer cracks and pores has high added value and a wide range of application. Hitherto the preparation methods of α-HH from industrial by-product gypsum mainly include the autoclave process, salt/acid solution process, or alcohol-water solution process. Thereinto, the autoclave process is the only method to realize industrialization. In order to solve the high energy consumption and unfavorable continuous operation of the autoclave process, researchers suggested alternative approaches, such as salt/acid solution process and alcohol-water solution process. However, these methods are basically in the laboratory stage or pilot scale test at present. Compared with FGD gypsum, the utilization rate of PG with a larger emission is very low owing to the high impurity content. And combining the preparation of α-HH with the recovery of valuable impurities from PG seems a promising way to solve the bulk deposition of PG.
Rocznik
Strony
168--181
Opis fizyczny
Bibliogr. 74 poz., rys., wykr.
Twórcy
autor
  • Hunan University of Science and Technology
autor
  • Hunan University of Science and Technology
autor
  • Hunan University of Science and Technology
autor
  • Hunan University of Science and Technology
autor
  • Hunan University of Science and Technology
autor
  • Hunan University of Science and Technology
autor
  • Hunan University of Science and Technology
autor
  • Changsha University of Science and Technology
Bibliografia
  • ALFRED, Z., IVAN, O., FELICIA, T., KATARINA, B., 1991. Autoclave-free formation of α-hemihydrate gypsum. J. Am. Ceram. Soc., 74(5), 1117-1124.
  • ALLEN, M., 1975. Conversion of by-product gypsum to a-hemihydrate by ICI's process. Phosphorus and Potassium, 78, 42-44.
  • BENSTED J., PRAKASH, S., 1968. Investigation of the calcium sulphate-water system by infrared spectroscopy. Nature, 219(5149), 60-61.
  • BENSTED J., VERMA, S., 1972. Investigation of the α-and β-forms of calcium sulfate hemihydrate. Cement Technology, 3, 67-70.
  • BEZOU, C., NONAT, A., MUTIN, J. C., CHRISTENSEN, A. N.,LEHMANN, M. S., 1995. Investigation of the crystal structure of γ-CaSO4 , CaSO4×0.5H2O, and CaSO4×0.6H2O by powder diffraction methods. J. Solid State Chem., 117(1), 165-176.
  • BUSHUEV, N., 1982. Water of crystallization in the CaSO4•0.67H2O and CaSO4•0.5H2O structures. Russ. J. Inorg. Chem., 27(3), 344-347.
  • CHAROLA, A. E., PUHRINGER, J., STEIGER, M., 2007. Gypsum: a review of its role in the deterioration of building materials. Environ. Geol., 52(2), 339-352.
  • CHRISTENSEN, A. N., JENSEN, T. R.,NONAT, A., 2010. A new calcium sulfate hemi-hydrate. Dalton Trans., 39(8), 2044-2048.
  • CHRISTENSEN, A. N., OLESEN, M., CERENIUS, Y., JENSEN, T. R., 2008. Formation and transformation of five different phases in the CaSO4−H2O system: crystal structure of the subhydrate β-CaSO4× 0.5H2O and soluble anhydrite CaSO4. Chem. Mater., 20(6), 2124-2132.
  • DAHLGREN, S.-E., 1960. Fertilizer materials, calcium sulfate transitions in superphosphate. J. Agric. Food. Chem., 8(5), 411-412.
  • DANTAS, H. F., MENDES, R. A. S., PINHO, R. D., SOLEDADE, L. E. B., PASKOCIMAS, C. A., LIRA, B. B., SCHWARTZ, M. O. E., SOUZA, A. G., SANTOS, I. M. G., 2007. Characterization of gypsum using TMDSC. J. Therm. Anal. Calorim., 87(3), 691-695.
  • DEGIRMENCI, N., 2008. The using of waste phosphogypsum and natural gypsum in adobe stabilization. Construction and Building Materials, 22(6), 1220-1224.
  • DUAN, Z., LI, J., LI, T., ZHENG, S., HAN, W., GENG, Q., GUO, H., 2017. Influence of crystal modifier on the preparation of α-hemihydrate gypsum from phosphogypsum. Construction and Building Materials, 133, 323-329.
  • EL-DIDAMONY, H., GADO, H., AWWAD, N., FAWZY, M., ATTALLAH, M., 2013. Treatment of phosphogypsum waste produced from phosphate ore processing. J. Hazard. Mater., 244, 596-602.
  • ENGERT, H., KOSLOWSKI, T., 1998. The new gypsum binder Alpha 2000-Production technology and products. ZKG International, 51(4), 229-237.
  • FREYER, D., VOIGT, W., 2003. Crystallization and phase stability of CaSO4 and CaSO4–based salts. Monatsh. Chem. 134(5), 693-719.
  • GOTO, M., MOLONY, B., RIDGE, M., WEST, G., 1966. The forms of calcium sulphate hemihydrate. Aust. J. Chem., 19(2), 313-316.
  • GUAN, B., FU, H., YU, J., JIANG, G., KONG, B., WU, Z., 2011a. Direct transformation of calcium sulfite to α-calcium sulfate hemihydrate in a concentrated Ca–Mg–Mn chloride solution under atmospheric pressure. Fuel, 90(1), 36-41.
  • GUAN, B., JIANG, G., FU, H., YANG, L., WU, Z., 2011b. Thermodynamic preparation window of alpha calcium sulfate hemihydrate from calcium sulfate dihydrate in non-electrolyte glycerol–water solution under mild conditions. Ind. Eng. Chem. Res., 50(23), 13561–13567.
  • GUAN, B., JIANG, G., WU, Z., MAO, J., BAO, K., 2011c. Preparation of α-calcium sulfate hemihydrate from calcium sulfate dihydrate in methanol–water solution under mild conditions. J. Am. Ceram. Soc., 94(10), 3261-3266.
  • GUAN, B., SHEN, Z., WU, Z., YANG, L., MA, X., 2008. Effect of pH on the preparation of α-calcium sulfate hemihydrate from FGD gypsum with the hydrothermal method. J. Am. Ceram. Soc., 91(12), 3835–3840.
  • GUAN, B., YANG, L., FU, H., KONG, B., LI, T., YANG, L., 2011d. α-calcium sulfate hemihydrate preparation from FGD gypsum in recycling mixed salt solutions. Chem. Eng. J., 174(1), 296-303.
  • GUAN, B., YANG, L., WU, Z., 2010. Effect of Mg2+ ions on the nucleation kinetics of calcium sulfate in concentrated calcium chloride solutions. Ind. Eng. Chem. Res., 49(12), 5569-5574.
  • GUAN, B., YANG, L., WU, Z., SHEN, Z., MA, X., YE, Q., 2009. Preparation of α-calcium sulfate hemihydrate from FGD gypsum in K, Mg-containing concentrated CaCl2 solution under mild conditions. Fuel, 88(7), 1286-1293.
  • GUAN, Q., SUN, W., GUAN, C., YU, W., ZHU, X., KHOSO, S. A., WANG, P., PENG, W., 2019a. Promotion of conversion activity of flue gas desulfurization gypsum into α-hemihydrate gypsum by calcination-hydration treatment. Journal of Central South University, 26(12), 3213-3224.
  • GUAN , Q., SUN, W., HU, Y., YIN, Z., ZHANG, C., GUAN, C., ZHU, X., AHMED KHOSO, S., 2019b. Simultaneous control of particle size and morphology of α-CaSO4×1/2H2O with organic additives. J. Am. Ceram. Soc., 102(5), 2440- 450.
  • GUAN, Q., TANG, H., SUN, W., HU, Y., YIN, Z., 2017. Insight into influence of glycerol on preparing α-CaSO4•½H2O from flue gas desulfurization gypsum in glycerol–water solutions with succinic acid and NaCl. Ind. Eng. Chem. Res., 56, 9831-9838.
  • HABASHI, F., 2010. The recovery of the lanthanides from phosphate rock. J. Chem. Technol. Biotechnol., 35(1), 5-14.
  • HAMM, H., 1994. Coping with the FGD gypsum problem-A task for the European gypsum industry. Zem. Kalk Gips 87/51(8), 443-451.
  • HE, H., DONG, F., HE, P., XU, L., 2014. Effect of glycerol on the preparation of phosphogypsum-based CaSO4×0.5H2O whiskers. Journal of Materials Science, 49(5), 1957-1963.
  • HIGNETT T. P. 1980 Fertilizer manual: International Fertilizer Development Center) JAMIALAHMADI, M., MULLER-STEINHAGEN, H., 2000. Crystallization of calcium sulfate dihydrate from phosphoric acid. Developments in Chemical Engineering and Mineral Processing, 8(5-6), 587-604.
  • JIANG, G., FU, H., SAVINO, K., QIAN, J., WU, Z., GUAN, B., 2013. Nonlattice cation-SO42– ion pairs in calcium sulfate hemihydrate nucleation. Cryst. Growth Des., 13(11), 5128-5134.
  • JUNG, H.-M., SONG, G.-A., LEE, Y.-K., BAEK, J.-H., RYOO, H.-M., KIM, G.-S., CHOUNG, P.-H., WOO, K. M., 2010. Modulation of the resorption and osteoconductivity of α-calcium sulfate by histone deacetylase inhibitors. Biomaterials, 31(1), 29-37.
  • KOVLER, K. 2012. Toxicity of Building Materials, ed F. Pacheco-Torgal, et al.: Woodhead Publishing) pp 196-240
  • KUZEL, H. J., HAUNER, M., 1987. Chemical and crystallographical properties of calcium sulfate hemihydrate and anhydrite III. ZKG International, 40(12), 628-632.
  • LABRINCHA, J., PUERTAS, F., SCHROEYERS, W., KOVLER, K., PONTIKES, Y., NUCCETELLI, C., KRIVENKO, P., KOVALCHUK, O., PETROPAVLOVSKY, O.,KOMLJENOVIC, M. 2017 Naturally Occurring Radioactive Materials in Construction: Elsevier) pp 183-252
  • LI, X., ZHANG, Q., KE, B., WANG, X., LI, L., LI, X., MAO , S., 2018. Insight into the effect of maleic acid on the preparation of α-hemihydrate gypsum from phosphogypsum in Na2SO4 solution. J. Cryst. Growth, 493, 34-40.
  • LI, X., ZHANG, Q., SHEN, Z., LI, L., LI, X., MAO, S., 2019. L-aspartic acid: A crystal modifier for preparation of hemihydrate from phosphogypsum in CaCl2 solution. J. Cryst. Growth, 511, 48-55.
  • LI, Z., DEMOPOULOS, G. P., 2006. Model-based construction of calcium sulfate phase-transition diagrams in the HClCaCl2-H2O system between 0 and 100° C. Ind. Eng. Chem. Res., 45(13), 4517-4524.
  • LING, Y., DEMOPOULOS, G. P., 2005. Preparation of α-calcium sulfate hemihydrate by reaction of sulfuric acid with lime. Ind. Eng. Chem. Res., 44(4), 715-724.
  • LOKSHIN, E. P., TAREEVA, O. A., ELIZAROVA, I. P., 2010. A study of the sulfuric acid leaching of rare-earth elements, phosphorus, and alkali metals from phosphodihydrate. Russ. J. Appl. Chem., 83(6), 958-964.
  • LU, W., MA, B., SU, Y., HE, X., JIN, Z., QI H., 2019. Preparation of α-hemihydrate gypsum from phosphogypsum in recycling CaCl2 solution. Construction and Building Materials, 214, 399-412.
  • LUO, K., LI, C., XIANG, L., LI, H., NING, P., 2010. Influence of temperature and solution composition on the formation of calcium sulfates. Particuology, 8(3), 240-244.
  • MA, B., LU, W., SU, Y., LI, Y., GAO, C., HE, X., 2018. Synthesis of α-hemihydrate gypsum from cleaner phosphogypsum. J. Clean. Prod., 195, 396-405.
  • MA, B., RU, X., ZOU, K., LU, S., FU, H., 2013a. Preparation of α-calcium sulfate hemihydrate from phosphogypsum in CaNa-Cl solutions under atmospheric pressure. CIESC Journal, 64(7), 2701-2707.
  • MA, B., RU, X., ZOU, K., LU, S., FU, H., 2013b. Preparation of α-calcium sulfate hemihydrate from phosphogypsum in CaNa-Cl solutions under atmospheric pressure. CIESC Journal, 7, 2701-2707.
  • MA, B. G., RU, X. H., LU, S. W., ZOU, K. B. 2012 Preparation of α-calcium sulfate hemihydrate from phosphogypsum in CaCl2 solution under atmospheric pressure. In: Advanced Materials Research: Trans Tech Publications) pp 570-574
  • MCADIE H., 1964. The effect of water vapor upon the dehydration of CaSO4• 2H2O. Can. J. Chem., 42(4), 792-801.
  • MI, Y., CHEN, D., HE, Y.,WANG, S., 2017. Morphology-controlled preparation of α-calcium sulfate hemihydrate from phosphogypsum by semi-liquid method. Cryst. Res. Technol., 53(1), 1750-1762.
  • MUN, K., HYOUNG, W., LEE, C., SO, S., SOH, Y., 2007. Basic properties of non-sintering cement using phosphogypsum and waste lime as activator. Construction and Building Materials, 21(6), 1342-1350.
  • PARREIRA, A. B., KOBAYASHI, A. R. K., SILVESTRE JR, O., 2003. Influence of Portland cement type on unconfined compressive strength and linear expansion of cement-stabilized phosphogypsum. J. Environ. Eng., 129(10), 956-960.
  • PENG, W., LEE, E. J., PARK, C. S., YOON, B. H., SHIN, D. S., KIM, H. E., KOH, Y. H., PARK, S. H., 2008. Calcium sulfate hemihydrate powders with a controlled morphology for use as bone cement. J. Am. Ceram. Soc., 91(6), 2039-2042.
  • PRESSLER, J. W. 1984 ed R. A. Kuntze (West Conshohocken, PA: ASTM International) pp 105-115
  • PRINCE, E.,WILSON, A. J. C. 2004 International tables for crystallography vol 100: Kluwer.)
  • REIJNDERS, L., 2007. Cleaner phosphogypsum, coal combustion ashes and waste incineration ashes for application in building materials: A review. Building and Environment, 42(2), 1036-1042.
  • ROSZCZYNIALSKI, W., GAWLICKI, M., NOCUŃ-WCZELIK, W. 1996a Waste Materials Used in Concrete Manufacturing, ed S. Chandra (Westwood, NJ: William Andrew Publishing) pp 53-141
  • ROSZCZYNIALSKI, W., GAWLICKI, M., NOCUŃ-WCZELIK, W. 1996b Waste Materials Used in Concrete Manufacturing: Elsevier) pp 53-141
  • RU, X., MA, B., HUANG, J., HUANG, Y., 2012. Phosphogypsum transition to α-calcium sulfate hemihydrate in the presence of omongwaite in NaCl solutions under atmospheric pressure. J. Am. Ceram. Soc., 95(11), 3478-3482.
  • RU, X. H. 2013 Processing theory of application technology research of phosphogypsum based gypsum plaster. (Wuhan: Wuhan University of Technology)
  • RYCHKOV, V. N., KIRILLOV, E. V., KIRILLOV, S. V., SEMENISHCHEV, V. S., BUNKOV, G. M., BOTALOV, M. S., SMYSHLYAEV, D. V., MALYSHEV, A. S., 2018. Recovery of rare earth elements from phosphogypsum. Journal of Cleaner Production, 196, 674-681.
  • SAMONOV, A. E., 2011. New data on mineral forms of rare metals in phosphogypsum wastes. Dokl. Earth Sci., 440(1), 1312-1315.
  • SCHMIDT, H., PASCHKE, I., FREYER, D., VOIGT, W., 2011. Water channel structure of bassanite at high air humidity: crystal structure of CaSO4× 0.625H2O. Acta Crystallogr., Sect. B: Struct. Sci 67(6), 467-475.
  • SCHRECK, A. E. 1978. Minerals Yearbook 1976 vol 1 (Washington, DC: U.S. Government Printing Office) SINGH, M., GARG, M., VERMA, C., HANDA, S., KUMAR, R., 1996. An improved process for the purification of phosphogypsum. Construction and Building Materials, 10(8), 597-600.
  • SINGH, M., RAI, M., 1988. Autoclaved gypsum plaster from selenite and by-product phosphogypsum. J. Chem. Technol. Biotechnol., 43(1), 1-12.
  • TANG, M., LI, X., SHEN, Y.,SHEN, X., 2015. Kinetic model for calcium sulfate α-hemihydrate produced hydrothermally from gypsum formed by flue gas desulfurization. J. Appl. Crystallogr., 48(3), 827–835.
  • TAYIBI, H., CHOURA, M., LóPEZ, F. A., ALGUACIL, F. J.,LOPEZ-DELGADO, A., 2009. Environmental impact and management of phosphogypsum. J. Environ. Manage., 90(8), 2377-2386.
  • THOMAS, M. V., PULEO, D. A., 2009. Calcium sulfate: properties and clinical applications. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 88(2), 597-610.
  • VAN DER SLUIS, S., WITKAMP, G.,VAN ROSMALEN, G., 1986. Crystallization of calcium sulfate in concentrated phosphoric acid. J. Cryst. Growth, 79(1-3), 620-629.
  • WALAWALKAR, M., NICHOL, C. K., AZIMI, G., 2016. Process investigation of the acid leaching of rare earth elements from phosphogypsum using HCl, HNO3 , and H2SO4. Hydrometallurgy, 166, 195-204.
  • WANG, L., LONG, Z., HUANG, X., PENG, X., HAN, Y.,CUI, D., 2008. Rare earth distribution control during wet process of phosphoric acid production. J. Rare Earths, 26(3), 307-312.
  • WEISS, H., BRAEU, M. F., 2009. How much water does calcined gypsum contain? Angew. Chem. Int. Ed., 48(19), 3520- 3524.
  • WIRSCHING, R., HULLER, R.,OLEJNIK, R., 1994. Gypsum form flue gas desulphurization plants-Definitions and legislation in the European Communities in the OECD and in Germany. Zem. Kalk Gips (2), 65-69.
  • YANG, D., 2018. Progress and prospect of resource utilization of phosphogypsum and titanium gypsum in China (In Chinese). Sulphuric Acid Industry, 10, 5-10.
  • YANG, J., LIU, W., ZHANG, L., XIAO, B., 2009. Preparation of load-bearing building materials from autoclaved phosphogypsum. Construction and Building Materials, 23(2), 687-693.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3fe75332-6bbe-49cd-bc35-9b45abc275b4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.