PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

High-Performance Milling Techniques of Thin-Walled Elements

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents an overview of high-performance milling techniques of thin-walled elements. Currently, the tendency to simplify semi-finished products is used in aviation. In that case even 95% of semi-finished product mass is converted into chips, hence the increasing interest in such technol-ogies as: High Performance Cutting and High Speed Cutting. The aim of the paper was to research high-performance milling techniques of thin-walled elements in reference to conventional machin-ing. The material was the EN AW-7075 T651 aluminium alloy. A thin-walled pocket structure was designed and manufactured. The aspects related to geometric accuracy, surface quality and cutting time were analysed. On the basis of the obtained results, it was found that in case of geometric accu-racy related to the wall deformation, the greatest deformation was obtained after HPC, while the smallest one after HSC. The difference was over 400% (comparing HPC to HSC). A similar relation-ship was also received for the quality of the machined surface. Analysing the cutting time, the best result was achieved after HPC in reference to HSC and conventional machining. Taking into ac-count all analysed variables, the best solution was a combination of HPC and HSC. Thanks to the use of high-speed machining as a finishing, it is possible to receive high geometric accuracy and quality of the machined surface, while the application of HPC for roughing allows to shorten the cutting time, translating into an increase in the efficiency of the milling process. Conventional ma-chining is slightly less advantageous in terms of geometric accuracy and surface quality and it could possibly be used alternatively with High Speed Cutting, but its weakness is significantly lower effi-ciency compared to high-performance machining.
Słowa kluczowe
Twórcy
  • Department of Production Engineering, Faculty of Mechanical Engineering, Lublin University of Technology, ul. Nadbystrzycka 36, 20-618 Lublin, Poland
Bibliografia
  • 1. Oczoś K.E., Kawalec A. Forming light metals. Wydawnictwo Naukowe PWN; 2012. (in Polish).
  • 2. Bałon P., Rejman E., Kiełbasa B., Smusz R. Using HSM Technology in Machining of Thin-Walled Aircraft Structures. Acta Mechanica et Automatica. 2022; 16(1): 27–33.
  • 3. Zalewski A. Efficient production thanks to optimal HSM machining strategy. Projektowanie i konstrukcje inżynierskie. 2007; 3: 23–26. (in Polish).
  • 4. Adamski W. Selected directions of increasing the efficiency of cutting processes. Mechanik. 2009; 5–6: 540–546. (in Polish).
  • 5. Bałon P., Szostak J., Kiełbasa B., Rejman E., Smusz R. Application of high speed machining technology in aviation. AIP Conference Proceedings. 2018; 1960: 070003.
  • 6. Erdel B.P. High-Speed Machining. Society of Manufacturing Engineers; 2003.
  • 7. Pasko R., Przybylski L., Słodki B. High speed machining (HSM) – the effective way of modern cutting. International Workshop CA Systems and Technologies. 2002: 72–79.
  • 8. Adamski W. Manufacturing development strategies in aviation industry. Advances in Manufacturing Science and Technology. 2010; 34: 73–84.
  • 9. Kuczmaszewski J., Łogin W., Pieśko P., Zawada-Michałowska M. Assessment of the Accuracy of High Speed Machining of Thin-Walled EN AW-2024 Aluminium Alloy Elements Using Carbide Milling Cutter and with PCD Blades. In: Advances in Manufacturing. Lecture Notes in Mechanical Engineering, Poznań, Poland 2018, 671–680.
  • 10. Pal Pandian P., Prabhu Raja V., Sakthimurugan K. Surface Error Compensation in HSM of Thin Wall Structures. International Journal of Engineering Science Invention. 2013; 2(2): 1–11.
  • 11. Wang B., Liu Z., Song Q., Wan Y., Shi Z. Proper selection of cutting parameters and cutting tool angle to lower the specific cutting energy during high speed machining of 7050-T7451 aluminum alloy. Journal of Cleaner Production. 2016; 129: 292–304.
  • 12. Xu D., Feng P., Li W., Ma Y. An improved material constitutive model for simulation of high-speed cutting of 6061-T6 aluminum alloy with high accuracy. International Journal of Advanced Manufacturing Technology. 2015; 79(5–8): 1043–1053.
  • 13. Olszak W. Machining. Wydawnictwa Naukowo-Techniczne; 2009. (in Polish).
  • 14. Machining – high productivity. Ed.: Cichosz P. Publishing House of the Wrocław University of Technology; 2007 (in Polish).
  • 15. Bałon P., Rejman E., Smusz R., Szostak J., Kiełbasa B. Implementation of high speed machining in thin-walled aircraft integral elements. Open Engineering. 2018; 8(1): 162–169.
  • 16. Cui Q.Y., Dong X.R., Ma Y.Z.E., Liu T.H. Application of high speed machining technology in modern die manufacture. Materials Science Forum. 2014; 800–801: 139–143.
  • 17. Hon K., Baharudin B.T.H.T. The Impact of High Speed Machining on Computing and Automation. International Journal of Automation and Computing. 2006; 1: 63–68.
  • 18. Zawada-Michałowska M., Kuczmaszewski J., Legutko S., Pieśko P. Techniques for Thin-Walled Element Milling with Respect to Minimising Post-Machining Deformations. Materials. 2020; 13(21): 1–17.
  • 19. Zhu K., Zhang Y. A generic tool wear model and its application to force modeling and wear monitoring in high speed milling. Mechanical Systems and Signal Processing. 2019; (115): 147–161.
  • 20. Bobzin K. High-performance coatings for cutting tools. CIRP Journal of Manufacturing Science and Technology. 2017; 18: 1–9.
  • 21. Józwik J. Dynamic Measurement of Spindle Errors of CNC Machine Tools by Capacitive Sensors During Aircraft Parts Machining. In: 5th IEEE International Workshop on Metrology for AeroSpace, MetroAeroSpace 2018 – Proceedings, Rome, Italy 2018, 398–402.
  • 22. Harpaz O., Books B., Schwaar M., Schubert A., Eckert U. Parallel High Speed Machining with a New Additional HSC Spindle for Machine Tools. Procedia CIRP. 2012; 1: 673–674.
  • 23. Helleno A.S., Schützer K. Investigation of tool path interpolation on the manufacturing of die and molds with HSC technology. Journal of Materials Processing Technology. 2006; 179(1–3): 178–184.
  • 24. Morey B. High-speed machining for aerospace. Manufacturing Engineering. 2008; 3: 133–143.
  • 25. Souza de A.F., Coelho R.T. Experimental investigation of feed rate limitations on high speed milling aimed at industrial applications. The International Journal of Advanced Manufacturing Technology. 2007; 32(11–12): 1104–1114.
  • 26. Burek J., Płodzień M. High-performance machining of aluminium alloy parts with complex shapes. Mechanik. 2012; 7: 542–549. (in Polish).
  • 27. Burek J., Żyłka Ł., Płodzień M., Gdula M., Sulkowicz P. The influence of the cutting edge shape on high performance cutting. Aircraft Engineering and Aerospace Technology. 2018; 90(1): 134–145.
  • 28. Kuczmaszewski J., Pieśko P., Zawada-Michałowska M. Carbide milling cutter blades durability during machining of Al-Si casting alloy. In: MAPE 2018 – XV International Conference “Multidisciplinary Aspects of Production Engineering”. Wrocław, Poland 2018, 169–175.
  • 29. M’Saoubi R., Axinte D., Soo S.L., Nobel C., Attia H., Kappmeyer G., Engin S., Sim W.-M. High performance cutting of advanced aerospace alloys and composite materials. CIRP Annals – Manufacturing Technology. 2015; 64(2): 557–580.
  • 30. Obikawa T., Kamio A., Takaoka H., Osada A. Micro-texture at the coated tool face for high performance cutting. International Journal of Machine Tools & Manufacture. 2011; 51: 966–972.
  • 31. Machine Tools for High Performance Machining. Eds.: Lopez de Lacalle L.N., Lamikiz A. Springer; 2009.
  • 32. Kuczmaszewski J., Pieśko P., Zawada-Michałowska M. Evaluation of the impact of the natural seasoning process on post-machining deformation of thin-walled elements made of aluminium alloy EN AW-2024. IOP Conference Series: Materials Science and Engineering. 2018; 393: 1–7.
  • 33. Zawada-Michałowska M., Kuczmaszewski J., Łogin W., Pieśko P. Influence of machining strategies and technological history of semi-finished product on the deformation of thin-walled elements after milling. Advances in Science and Technology Research Journal. 2017; 11(3): 289–296.
  • 34. Machining of aluminium and magnesium alloys. Eds.: Kuczmaszewski J., Zaleski K. Publishing House of Lublin University of Technology; 2015. (in Polish)
  • 35. Cerutti X., Mocellin K., Hassini S., Blaysat B., Duc E. Methodology for aluminium part machining quality improvement considering mechanical properties and process conditions. CIRP Journal of Manufacturing Science and Technology. 2017; 18: 18–38.
  • 36. Gao H., Zhang Y., Wu Q., Song J. An analytical model for predicting the machining deformation of a plate blank considers biaxial initial residual stresses. The International Journal of Advanced Manufacturing Technology. 2017; 93: 1473–1486.
  • 37. Jiang X., Wang Y., Ding Z., Li H. An approach to predict the distortion of thin-walled parts affected by residual stress during the milling process. The International Journal of Advanced Manufacturing Technology. 2017; 93: 4203–4216.
  • 38. Lu L.X., Sun J., Li Y.L., Li J.F. A Theoretical Model for Load Prediction in Rolling Correction Process of Thin-Walled Aeronautic Parts. The International Journal of Advanced Manufacturing Technology. 2017; 92: 4121–4131.
  • 39. Franceschi A., Kaffenberger M., Schork B., Hoche H., Oechsner M., Groche P. Observations on the stability of the residual stresses after cold forming and unidirectional loading. Production Engineering. 2019; 13: 157–167.
  • 40. Wang J., Ibaraki S., Matsubara A. A cutting sequence optimization algorithm to reduce the workpiece deformation in thin-wall machining. Precision Engineering. 2017; 50: 506–514.
  • 41. Zawada-Michałowska M.; Kuczmaszewski J.; Pieśko P. Pre-Machining of Rolled Plates as an Element of Minimising the Post-Machining Deformations. Materials. 2021; 13: 4777.
  • 42. Matuszak J., Kłonica M., Zagorski I. Effect of brushing conditions on axial forces in ceramic brush surface treatment. In: 2019 IEEE International Workshop on Metrology for AeroSpace, MetroAeroSpace 2019, Turin, Italy, 2019, 644–648.
  • 43. Standard, PN-EN 485-2+A1:2018-12: Aluminium and Aluminium Alloys – Sheet, Tape, Plate – Part 2: Mechanical Properties.
  • 44. Standard, PN-EN 573-1:2006: Aluminium and Aluminium Alloys – Chemical Composition and Form of Wrought Products – Part 1: Numerical Designation System.
  • 45. Standard, PN-EN ISO 4287:1999/A1:2010: Geometrical product specifications – Geometric structure of the surface: profile method – Terms, definitions and parameters of the geometric structure of the surface.
  • 46. Standard, PN-EN ISO 25178-2:2012: Geometrical product specifications (GPS) – Surface geometric structure: Spatial – Part 2: Terms, definitions and parameters of the surface geometric structure.
  • 47. Zawada-Michałowska M., Pieśko P., Józwik J., Legutko S., Kukiełka L. A Comparison of the Geometrical Accuracy of Thin-Walled Elements Made of Different Aluminum Alloys. Materials. 2021; 14: 7242.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3fe6cd7c-d8b7-40f9-80e7-772fc477bab5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.