Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper presents a mathematical model of a positional game of the safe control of a vessel in collision situations at sea, containing a description of control, state variables and state constraints as well as sets of acceptable ship strategies, as a multi-criteria optimisation task. The three possible tasks of multi-criteria optimisation were formulated in the form of non-cooperative and cooperative multi-stage positional games as well as optimal non-game controls. The multicriteria control algorithms corresponding to these tasks were subjected to computer simulation in Matlab/Simulink software based on the example of the real navigational situation of the passing of one’s own vessel with eighteen objects encountered in the North Sea.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
46--52
Opis fizyczny
Bibliogr. 17 poz., rys.
Twórcy
autor
- Gdynia Maritime University, Morska 83, 81-225 Gdynia, Poland
Bibliografia
- 1. Kun G. (2001): Stabilizability, controllability, and optimal strategies of linear and nonlinear dynamical games. PhD Thesis. RWTH, Aachen.
- 2. Stateczny A. (2001): Neural manoeuvre detection of the tracked target in ARPA system. IFAC Conference on Control Applications in Marine Systems Location, University of Strathclyde, Glasgow, 2001, Book Series IFAC, pp. 209–214.
- 3. Szlapczynski R., Szlapczynska J. (2017): A method of determining and visualizing safe motion parameters of a ship navigating in restricted waters. Ocean Engineering, 129, 363–373.
- 4. Engwerda J. C. (2005): LQ dynamic optimization and differential games, John Wiley & Sons, New York.
- 5. Basar T., Bernhard P. (2008): H-Infinity optimal control and related mini-max design problems: A dynamic game approach. Springer, Berlin.
- 6. Lisowski J. (2012): The optimal and safe ship trajectories for different forms of neural state constraints. Mechatronic Systems, Mechanics and Materials, Book Series: Solid State Phenomena, Vol. 180, pp. 64–69.
- 7. Miloh T. (1974): Determination of critical maneuvers for collision avoidance using the theory of differential games. Inst. Fur Schiffbau, Hamburg, 1974.
- 8. Olsder G. J., Walter J. L. (1977): A differential game approach to collision avoidance of ships. Proc. of the 8th IFIP Symp. On Optimization Techniques, Novosibirsk, pp. 264–271.
- 9. Ehrgott M., Gandibleux X. (2002): Multiple criteria optimization: state of the art annotated bibliographic surveys. Kluwer Academic Press, New York.
- 10. Ehrgott, M. (2005): Multicriterial optimization. Springer, Berlin.
- 11. Lisowski J. (2016): The sensitivity of state differential game vessel traffic model. Polish Maritime Research, 2016, Vol. 23(2), 14–18.
- 12. Wang N., Meng X., Xu Q., Wang Z. (2009): A unified analytical framework for ship domains. The Journal of Navigation, 62(4), 643–655.
- 13. Wang N. (2013): A novel analytical framework for dynamic quaternion ship domains. The Journal of Navigation, 66(2), 265–281.
- 14. Xu Q., Wang N. (2014): A survey on ship collision risk evaluation. Promet – Traffic & Transportation, 26(6), 475–486.
- 15. Xu Q., Yang Y., Zhang C., Zhang I. (2018): Deep convolutional neural network-based autonomous marine vehicle maneuver. International Journal of Fuzzy Systems, 20(2), 687–699.
- 16. Breton M., Szajowski K. (2010): Advances in dynamic games: theory, applications, and numerical methods for differentia and stochastic games. Birkhauser, Boston.
- 17. Eshenauer H., Koski J., Osyczka A. (1999): Multicriteria design optimization: procedures and application. Springer-Verlag, Berlin.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3fe6c8ca-c599-427f-b01f-3d7d37843b84