Tytuł artykułu
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this work, we discuss the approximate controllability of some nonlinear partial functional integrodifferential equations with nonlocal initial condition in Hilbert spaces.We assume that the corresponding linear part is approximately controllable. The results are obtained by using fractional power theory and α-norm, the measure of noncompactness and theMönch fixed-point theorem, and the theory of analytic resolvent operators for integral equations. As a result, we obtain a generalization of the work of Mahmudov [N. I. Mahmudov, Approximate controllability of evolution systems with nonlocal conditions, Nonlinear Anal. 68 (2008), no. 3, 536-546], without assuming the compactness of the resolvent operator. Our results extend and complement many other important results in the literature. Finally, a concrete example is given to illustrate the application of the main results.
Wydawca
Czasopismo
Rocznik
Tom
Strony
127--142
Opis fizyczny
Bibliogr. 23 poz.
Twórcy
autor
- Department of Mathematics, Faculty of Science, University of Buea, P.O. Box 63, Buea, South-West Region, Cameroon
autor
- Departement de Mathematiques Appliquées et Informatique, Ecole de Géologie et d’Exploitation Minière, Université de Ngaoundéré, B.P. 115 Meiganga, Cameroon
autor
- Département de Mathématiques, Faculté des Sciences Semlalia, Université Cadi Ayyad, B. P. 2390 Marrakech, Morocco
Bibliografia
- [1] R. Atmania and S. Mazouzi, Controllability of semilinear integrodifferential equations with nonlocal conditions, Electron. J. Differential Equations 2005 (2005), Paper No. 75.
- [2] J. Banaś and K. Goebel, Measures of Noncompactness in Banach Spaces, Lecture Notes Pure Appl. Math. 60, Marcel Dekker, New York, 1980.
- [3] D. N. Chalishajar and A. Kumar, Total controllability of the second order semi-linear differential equation with infinite delay and non-instantaneous impulses, Math. Comput. Appl. 23 (2018), no. 3, Paper No. 32.
- [4] Y. K. Chang, J. J. Nieto and W. S. Li, Controllability of semilinear differential systems with nonlocal initial conditions in Banach spaces, J. Optim. Theory Appl. 142 (2009), no. 2, 267-273.
- [5] R. F. Curtain and H. Zwart, An Introduction to Infinite-Dimensional Linear Systems Theory, Texts Appl. Math. 21, Springer, New York, 1995.
- [6] W. Desch, R. Grimmer and W. Schappacher, Well-posedness and wave propagation for a class of integrodifferential equations in Banach space, J. Differential Equations 74 (1988), no. 2, 391-411.
- [7] K. Ezzinbi, G. Degla and P. Ndambomve, Controllability for some partial functional integrodifferential equations with nonlocal conditions in Banach spaces, Discuss. Math. Differ. Incl. Control Optim. 35 (2015), no. 1, 25-46.
- [8] K. Ezzinbi, H. Toure and I. Zabsonre, Existence and regularity of solutions for some partial functional integrodifferential equations in Banach spaces, Nonlinear Anal. 70 (2009), no. 7, 2761-2771.
- [9] X. Fu and R. Huang, Existence of solutions for neutral integro-differential equations with state-dependent delay, Appl. Math. Comput. 224 (2013), 743-759.
- [10] Y. Fujita, Integrodifferential equation which interpolates the heat equation and the wave equation, Osaka J. Math. 27 (1990), no. 2, 309-321.
- [11] R. C. Grimmer, Resolvent operators for integral equations in a Banach space, Trans. Amer. Math. Soc. 273 (1982), no. 1, 333-349.
- [12] R. C. Grimmer and A. J. Pritchard, Analytic resolvent operators for integral equations in Banach space, J. Differential Equations 50 (1983), no. 2, 234-259.
- [13] A. Kumar, R. K. Vats and A. Kumar, Approximate controllability of second-order non-autonomous system with finite delay, J. Dyn. Control Syst. 26 (2020), no. 4, 611-627.
- [14] N. I. Mahmudov, Approximate controllability of semilinear deterministic and stochastic evolution equations in abstract spaces, SIAM J. Control Optim. 42 (2003), no. 5, 1604-1622.
- [15] N. I. Mahmudov, Approximate controllability of evolution systems with nonlocal conditions, Nonlinear Anal. 68 (2008), no. 3, 536-546.
- [16] N. I. Mahmudov and S. Zorlu, Approximate controllability of fractional integro-differential equations involving nonlocal initial conditions, Bound. Value Probl. 2013 (2013), Article ID 118.
- [17] F. Z. Mokkedem and X. Fu, Approximate controllability of semi-linear neutral integro-differential systems with finite delay, Appl. Math. Comput. 242 (2014), 202-215.
- [18] H. Mönch, Boundary value problems for nonlinear ordinary differential equations of second order in Banach spaces, Nonlinear Anal. 4 (1980), no. 5, 985-999.
- [19] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Appl. Math. Sci. 44, Springer, New York, 1983.
- [20] R. Sakthivel, Y. Ren and N. I. Mahmudov, On the approximate controllability of semilinear fractional differential systems, Comput. Math. Appl. 62 (2011), no. 3, 1451-1459.
- [21] S. Selvi and M. Mallika Arjunan, Controllability results for impulsive differential systems with finite delay, J. Nonlinear Sci. Appl. 5 (2012), no. 3, Special issue, 206-219.
- [22] J. Wang, Z. Fan and Y. Zhou, Nonlocal controllability of semilinear dynamic systems with fractional derivative in Banach spaces, J. Optim. Theory Appl. 154 (2012), no. 1, 292-302.
- [23] J. Wang and W. Wei, Controllability of integrodifferential systems with nonlocal initial conditions in Banach spaces, J. Math. Sci. (N. Y.) 177 (2011), no. 3, 459-465.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3fdef330-3f50-4bf7-ba64-fdfeb2fb86f9