PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

New Image Analysis Method for Determination of the Inter-Fibre Pore Size Intensity of Polyester Woven Barrier Fabrics

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Nowa metoda analizy obrazu do określania wielkosci porów między włóknami poliestrowych tkanin barierowych
Języki publikacji
EN
Abstrakty
EN
Porosity is an important characteristic of a filter textile, which affects permeability and retention properties. Determination of the inter-yarn and inter-fibre pore sizes of barrier textiles is also required to assess the filter behaviour of these textiles. In this study, a software tool was developed to detect the inter-fibre pore size distribution and pore size intensity of multifilament woven barrier fabrics using cross-section images. Fabrics were chosen according to their fabric construction parameters, such as the fabric index, weft yarn filament fineness and weft yarn structure (flat or textured).Microscopic cross-section images of weft yarns were taken, processed to binary images, and analysed with respect to the pore size distribution, number of pore lengths and pore intensity. It was also analysed how the fabric index; filament cross-section and filament fineness affect the inter-fibre pore lengths and separation level proposed. It was found that weft yarns with wider lengths and lower height showed wider inter-fibre pores. Inter-fibre pores decreased with a decrease in filament fineness. Moreover, the separation level proposed deviated from the 90% level depending on the fabric index. This deviation was very small in samples with reduced filament fineness and textured samples. The separation level proposed will be useful to understand the effect of fabric construction parameters to obtain targeted properties regarding inter-fibre and inter-yarn pore size.
PL
Porowatość jest ważną cechą tkanin filtracyjnych, która wpływa na przepuszczalność i właściwości retencyjne. Niezbędne do oceny zachowania filtrów jest określenie wielkości porów w przędzy i między włóknami. W badaniu opracowano narzędzie programowe do określenia rozkładu wielkości porów między włóknami i ich intensywności z wykorzystaniem przekrojów poprzecznych w przypadku tkanin barierowych. Tkaniny zostały wybrane zgodnie z ich parametrami konstrukcyjnymi, takimi jak indeks tkaniny, próba włókna nitki i struktura przędzy wątku (płaska lub teksturowana). Wykonano mikroskopowe obrazy przekroju nitek wątku, przetworzono je na obrazy binarne i analizowano pod względem rozkładu wielkości porów, liczby długości porów i intensywności porów. Przeanalizowano również, w jaki sposób indeks tkaniny, przekrój poprzeczny włókna i drobnoziarnistość wpływają na proponowane długości porów międzywłókienkowych i poziom separacji. Stwierdzono, że pory między włóknami zmniejszyły się wraz ze zmniejszeniem rozdrobnienia włókien. Ponadto proponowany poziom separacji odbiegał od poziomu 90% w zależności od indeksu tkaniny. Odchylenie to było bardzo małe w próbkach o zmniejszonej próbie rozdrobnienia i teksturowanych.
Rocznik
Strony
67--74
Opis fizyczny
Bibliogr. 29 poz., rys., tab.
Twórcy
  • Dresden University of Technology, Faculty of Mechanical Science and Engineering, Institute of Textile Machinery and High Performance Material Technology, Hohe Straße 6, Dresden, Germany
autor
  • Dresden University of Technology, Faculty of Mechanical Science and Engineering, Institute of Textile Machinery and High Performance Material Technology, Hohe Straße 6, Dresden, Germany
autor
  • Dresden University of Technology, Faculty of Mechanical Science and Engineering, Institute of Textile Machinery and High Performance Material Technology, Hohe Straße 6, Dresden, Germany
Bibliografia
  • 1. Rigby AJ, Anand SC, Horrocks AR. Textile materials for medical and healthcare applications. Journal of the Textile Institute 1997; 88(3): 83-93.
  • 2. Jain R, Raheel M. Barrier efficacy of woven and nonwoven fabrics used for protective clothing: Predictive models. Bulletin of Environmental Contamination and Toxicology. 2003; 71(3): 437-446.
  • 3. Nagy V, Vas LM. Pore characteristic determination with mercury porosimetry in polyester staple yarns. FIBRES & TEXTILES in Eastern Europe 2005;13, 3(51):21-26.
  • 4. Bénesse M, Coq L, Solliec C. Collection efficiency of a woven filter made of multifiber yarn: Experimental characterization during loading and clean filter modeling based on a two-tier single fiber approach. Journal of Aerosol Science 2006; 37(8): 974-989.
  • 5. Kuhr M, Aibibu D, Cherif C. Targeted partial finishing of barrier textiles with microparticles and their effects on barrier properties and comfort. Journal of Industrial Textiles 2014; 45(5): 853-878.
  • 6. Leonas K, Jinkins R. The relationship of selected fabric characteristics and the barrier effectiveness of surgical gown fabrics. American Journal of Infection Control 1997; 25(1): 1623.
  • 7. Laourine E, Cherif C. Characterization of barrier properties of woven fabrics for surgical protective textiles. Autex Research Journa. 2011; 11(2): 31-36.
  • 8. Rief S, Glatt E, Laourine E, Aibibu D, Cherif C, Wiegmann A. Modeling and CFD-Simulation of woven textiles to determine permeability and retention properties. Autex Research Journal 2011; 11(3): 78-83.
  • 9. Lankester B, Bartlett G, Garneti N, Blom A, Bowker K, Bannister G. Direct measurement of bacterial penetration through surgical gowns: a new method. Journal of Hospital Infection 2002; 50(4): 281-285.
  • 10. Calvin R. Evaluation of the protective value of hospital gowns against blood strike-through and methicillin-resistant staphylococcus aureus penetration. AORN Journal 1999; 69(6): 12641265.
  • 11. Hellmann A, Rief S, Schmidt K, Kocaman RT, Aibibu D, Cherif C, Ripperger S, Antonyuk S. Simulation der Partikelabscheidung und des Druckverlustes von Schutz- und Filtertextilien bei einer Gasdurchströmung. Filtrieren & Separieren 2017; 31(4): 268-274.
  • 12. Burleigh E, Wakeham H, Honold E, Skau E. Pore-Size Distribution in Textiles. Textile Research Journal 1949; 19(9): 547-555.
  • 13. Wakeham H, Spicer N. Pore-size distribution in textiles - A study of windproof and waterresistant cotton fabrics. Textile Research Journal 1949; 19(11): 703-710.
  • 14. Bhatia SK, Smith JL. Application of the bubble point method to the characterization of the pore-size distribution of geotextiles. Geotechnical Testing Journal 1995; 18(1): 94-105.
  • 15. Schwerzt F. The structure of porous materials from gas penetration rates. Journal of Applied Physics. 1949; 20(11): 1070-1075.
  • 16. Bhatia S, Smith J. Comparative study of bubble point method and mercury intrusion porosimetry techniques for characterizing the pore-size distribution of geotextiles. Geotextiles and Geomembranes 1994; 13(10): 679-702.
  • 17. Li D, Frey MW, Joo YL. Characterization of nanofibrous membranes with capillary flow porometry. Journal of Membrane Science 2006; 286(1–2): 104-114.
  • 18. Lee Y, Jeong J, Youn I, Lee, W. Modified liquid displacement method for determination of pore size distribution in porous membranes. Journal of Membrane Science 1997; 130(1-2): 149-156.
  • 19. Miller B, Tyomkin I. An Extended Range Liquid Extrusion Method for Determining Pore Size Distributions. Textile Research Journal 1986; 56(1): 35-40.
  • 20. Jena A, Gupta K. Liquid extrusion techniques for pore structure evaluation of textile materials. International Nonwovens Journal 2003;12: 45-52.
  • 21. Aibibu D, Lehmann B, Offermann P. Barrier effect of woven fabrics used for surgical gowns. Autex Research Journal 2003; 3(4): 186–193.
  • 22. Gong RH, Newton A. Image-analysis techniques. Part I: The Measurement of pore-size distribution. Journal of The Textile Institute 1992; 83(2): 253-268.
  • 23. She FH, Tung K, Kong L. Calculation of effective pore diameters in porous filtration membranes with image analysis. Robotics and Computer-Integrated Manufacturing 2008; 24(3): 427-434.
  • 24. Masselin I, Durand-Bourlier L, Laine J, Sizaret P, Chasseray X, Lemordant D. Membrane characterization using microscopic image analysis. Journal of Membrane Science 2001; 186(1): 85-96.
  • 25. Ziel R, Haus A, Tulke A. Quantification of the pore size distribution (porosity profiles) in microfiltration membranes by SEM, TEM and computer image analysis. Journal of Membrane Science 2008; 323(2): 241-246.
  • 26. Chang T, Zhang J, Fuch Y. Electrical, mechanical and morphological properties of compressed carbon felt electrodes in vanadium redox flow battery Journal of Power Sources. 2014; 245: 66-75.
  • 27. Mühl T, Binnebösel M, Klinge U, Goedderz T. New objective measurement to characterize the porosity of textile implants. Journal of Biomedical Materials Research Part B: Applied Biomaterials 2007; 84B(1): 176-183.
  • 28. Klinge U, Otto J, Mühl T. High structural stability of textile implants prevents pore collapse and preserves effective porosity at strain. BioMed Research International 2015; 2015:1-7.
  • 29. Walz F, Luibrand J. Die Gewebedichte. Textil Praxis Bd 1947; 2: 330-335.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3fde544f-4fd5-46ee-ac41-a641936e5d2a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.