PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A short technical review on Dgital Twins in smart manufacturing

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The most recent tendencies and breakthroughs in digital technologies have made it possible to implement a new model of manufacturing. By es-tablishing a digital twin of the real environment and basing their judg-ments on that twin, digital systems are able to monitor, optimize, and man-age the processes that they are applied to. This concept is predicated on the creation of a “Digital Twin” for each individual production source that contributes to the overall manufacturing process. In spite of the fact that different real-world applications of digital twin may involve different tech-nical and operational specifics, a significant amount of work was put in over the past few years to recognize and express principal properties, in addition to the primary challenges involved in the practical implementa-tion of digital twins within related industries. The purpose of this article is to review and analyze the fundamental principles, ideas, and technological solutions that comprise the Digital Twin vision for production processes. As a result, the objective of this review is to provide a synopsis of the state-of-the-art regarding digital twin concepts and to analyze their most recent status in terms of their potential application and implementation.
Rocznik
Strony
1--7
Opis fizyczny
Bibliogr. 37 poz., rys.
Twórcy
  • Department of Mechanical Engineering, Karabük University, Karabük, Turkey
Bibliografia
  • [1] S. Liu, Y. Lu, J. Li, X. Shen, X. Sun, J. Bao, A blockchain-based interactive approach between digital twin-based manufacturing systems, Comput. Ind. Eng. (2022) 108827. https://doi.org/10.1016/j.cie.2022.108827.
  • [2] J. Haw, S.L. Sing, Z.H. Liu, Digital twins in design for additive manufacturing, Mater. Today Proc. (2022). https://doi.org/10.1016/j.matpr.2022.09.268.
  • [3] Á. García, A. Bregon, M.A. Martínez-Prieto, Towards a connected Digital Twin Learning Ecosystem in manufacturing: Enablers and challenges, Comput. Ind. Eng. 171 (2022) 108463. https://doi.org/10.1016/j.cie.2022.108463.
  • [4] F. Xiang, P. Zhou, Y. Zuo, F. Tao, D. Zhang, Manufacturing Service Network of DigitalTwin Systems Under Cloud Computing Environment, Procedia CIRP. 109 (2022) 460–465. https://doi.org/10.1016/j.procir.2022.05.318.
  • [5] S. Ma, W. Ding, Y. Liu, S. Ren, H. Yang, Digital twin and big data-driven sustainable smart manufacturing based on information management systems for energy-intensive industries, Appl. Energy. 326 (2022) 119986. https://doi.org/10.1016/j.apenergy.2022.119986.
  • [6] A. Balu, S. Sarkar, B. Ganapathysubramanian, A. Krishnamurthy, Physics-aware machine learning surrogates for real-time manufacturing digital twin, Manuf. Lett. 34 (2022) 71–74. https://doi.org/10.1016/j.mfglet.2022.08.013.
  • [7] A.K. Ghosh, A.S. Ullah, R. Teti, A. Kubo, Developing sensorsignal-based digital twins for intelligent machine tools, J. Ind. Inf. Integr.24 (2021) 100242. https://doi.org/10.1016/j.jii.2021.100242.
  • [8] W. Yu, P. Patros, B. Young, E. Klinac, T.G. Walmsley, Energy digital twin technology for industrial energy management: Classification, challenges and future, Renew. Sustain. Energy Rev. 161 (2022) 112407. https://doi.org/10.1016/j.rser.2022.112407.
  • [9] D. Jones, A. Nassehi, C. Snider, J. Gopsill, P. Rosso, R. Real, M. Goudswaard, B. Hicks, Towards integrated version control of virtual and physical artefacts in new productdevelopment: inspirations from software engineering and the digital twin paradigm, Procedia CIRP. 100 (2021) 283–288. https://doi.org/10.1016/j.procir.2021.05.121.
  • [10] J.D. Camba, P. Company, F. Naya, Sketch-Based Modeling in Mechanical Engineering Design: Current Status andOpportunities, Comput. Des. 150 (2022) 103283. https://doi.org/10.1016/j.cad.2022.103283.[11]M.E. Korkmaz, M.K. Gupta, R. Demirsöz, M. Boy, N. Yaşar,M. Günay, N.S. Ross, On tribological characteristics of TiC rollers machined under hybrid lubrication/cooling conditions, Tribol. Int. 174 (2022) 107745. https://doi.org/10.1016/j.triboint.2022.107745.
  • [12] Y. Cui, S. Kara, K.C. Chan, Manufacturing big data ecosystem: A systematic literature review, Robot. Comput. Integr. Manuf. 62 (2020) 101861. https://doi.org/https://doi.org/10.1016/j.rcim.2019.101861.
  • [13] K. Nagorny, P. Lima-Monteiro, J. Barata, A.W. Colombo, Big Data Analysis in Smart Manufacturing: A Review, Int. J. Commun. Netw. Syst. Sci. 10 (2017) 31–58. https://doi.org/10.4236/ijcns.2017.103003.[14]J.-S. Lacam, D. Salvetat, Big data and Smart data: two interdependent and synergistic digital policies within a virtuous data exploitation loop, J. High Technol. Manag. Res. 32 (2021) 100406. https://doi.org/https://doi.org/10.1016/j.hitech.2021.100406.
  • [15] C. Koulamas, A. Kalogeras, Cyber-Physical Systems and Digital Twins in the Industrial Internet of Things [Cyber-Physical Systems], Computer (Long. Beach. Calif). 51 (2018) 95–98. https://doi.org/10.1109/MC.2018.2876181.
  • [16] S. Aheleroff, X. Xu, Y. Lu, M. Aristizabal, J. Pablo Velásquez, B. Joa, Y. Valencia, IoT-enabled smart appliances under industry 4.0: A case study, Adv. Eng. Informatics. 43 (2020) 101043. https://doi.org/https://doi.org/10.1016/j.aei.2020.101043.
  • [17] F. Tao, Q. Qi, L. Wang, A.Y.C. Nee, Digital Twins and Cyber–Physical Systems toward Smart Manufacturing and Industry 4.0: Correlation and Comparison, Engineering. 5 (2019) 653–661. https://doi.org/https://doi.org/10.1016/j.eng.2019.01.014.
  • [18] M. Kuntoğlu, E. Salur, M.K. Gupta, M. Sarıkaya, D.Y. Pimenov, A state-of-the-art review on sensors and signal processing systems in mechanical machining processes, Int. J. Adv. Manuf. Technol. (2021). https://doi.org/10.1007/s00170-021-07425-4.
  • [19] M. Singh, E. Fuenmayor, E.P. Hinchy, Y. Qiao, N. Murray,D. Devine, Digital Twin: Origin to Future, Appl. Syst. Innov. 4 (2021). https://doi.org/10.3390/asi4020036.
  • [20] D. Kiritsis, Closed-loop PLM for intelligent products in the era of the Internet of things, Comput. Des. 43 (2011) 479–501. https://doi.org/https://doi.org/10.1016/j.cad.2010.03.002.
  • [21] M.E. Korkmaz, M.K. Gupta, Z. Li, G.M. Krolczyk, M. Kuntoğlu, R. Binali, N. Yaşar, D.Y. Pimenov, Indirect monitoring of machining characteristics via advanced sensor systems: a critical review, Int. J. Adv. Manuf. Technol. 120 (2022) 7043–7078. https://doi.org/10.1007/s00170-022-09286-x.
  • [22] Y. Umeda, J. Ota, F. Kojima, M. Saito, H. Matsuzawa, T. Sukekawa, A. Takeuchi, K. Makida, S. Shirafuji, Development of an education program for digital manufacturing system engineers based on ‘Digital Triplet’ concept, Procedia Manuf. 31 (2019) 363–369. https://doi.org/https://doi.org/10.1016/j.promfg.2019.03.057.
  • [23] A. Bécue, E. Maia, L. Feeken, P. Borchers, I. Praça, A New Concept of Digital Twin Supporting Optimization and Resilience of Factories of the Future, Appl. Sci. 10 (2020). https://doi.org/10.3390/app10134482.
  • [24] J. Walker, A. Coraddu, M. Collu, L. Oneto, Digital twins of the mooring line tension for floating offshore wind turbines to improve monitoring, lifespan, and safety, J. Ocean Eng. Mar. Energy. (2021). https://doi.org/10.1007/s40722-021-00213-y.
  • [25] M.K. Gupta, Q. Song, Z. Liu, C.I. Pruncu, M. Mia, G. Singh, J.A. Lozano, D. Carou, A.M. Khan, M. Jamil, D.Y. Pimenov, Machining characteristics based life cycle assessment in eco-benign turning of pure titanium alloy, J. Clean. Prod.(2019) 119598. https://doi.org/10.1016/J.JCLEPRO.2019.119598.
  • [26] M. Minagawa, S. Kusayanagi, Study on BIM Utilization forDesign Improvement of Infrastructure Project, Procedia Eng. 125 (2015) 431–437. https://doi.org/https://doi.org/10.1016/j.proeng.2015.11.113.[27]B. Rigby, Continuous acquisition and life‐cycle support: the risks and benefits of early supplier involvement in the development process, Logist. Inf. Manag. 9 (1996) 22–26. https://doi.org/10.1108/09576059610113241.
  • [28] M. Günay, M.E. Korkmaz, Optimization of honing parameters for renewal of cylinder liners, Gazi Univ. J. Sci. 30 (2017).
  • [29] L. Bu, Y. Zhang, H. Liu, X. Yuan, J. Guo, S.Han, An IIoT-driven and AI-enabled framework for smart manufacturing system based on three-terminal collaborative platform, Adv. Eng. Informatics. 50 (2021) 101370. https://doi.org/https://doi.org/10.1016/j.aei.2021.101370.
  • [30] G. Spinardi, I. Graham, R. Williams, A comment on Standish et al.: The problem with CALS: Barriers to the development of product data exchange and the US continuous acquisition and life-cycle support programme, Int. J. Prod. Econ. 44 (1996) 201–206. https://doi.org/https://doi.org/10.1016/0925-5273(96)00029-1.
  • [31] R. Wang, Q. Song, Z. Liu, H. Ma, M.K. Gupta, Z. Liu, A Novel Unsupervised Machine Learning-Based Method for Chatter Detection in the Milling of Thin-Walled Parts, Sensors . 21 (2021). https://doi.org/10.3390/s21175779.
  • [32] P. Kundu, X. Luo, Y. Qin, Y. Cai, Z. Liu, A machine learning-based framework for automatic identification of process and product fingerprints for smart manufacturing systems, J. Manuf. Process. 73 (2022) 128–138. https://doi.org/https://doi.org/10.1016/j.jmapro.2021.10.060.
  • [33] D. Tan, M. Suvarna, Y. Shee Tan, J. Li, X. Wang, A three-step machine learning framework for energy profiling, activity state prediction and production estimation in smart process manufacturing, Appl. Energy. 291 (2021)116808. https://doi.org/https://doi.org/10.1016/j.apenergy.2021.116808.
  • [34] J. Atonal-Sánchez, J.A. Beltrán-Fernández, L.H. Hernández-Gómez, L. Yazmin-Villagran, J.A. Flores-Campos, A. López-Lievano, P. Moreno-Garibaldi, Termomechanical analysis of 3D printing specimens (acrylonitrile butadiene styrene), Adv. Struct. Mater. 92 (2019) 237–253. https://doi.org/10.1007/978-3-319-79005-3_17.
  • [35] J. Leng, D. Wang, W. Shen, X. Li, Q. Liu, X. Chen, Digital twins-based smart manufacturing system design in Industry 4.0: A review, J. Manuf. Syst. 60 (2021) 119–137. https://doi.org/https://doi.org/10.1016/j.jmsy.2021.05.011.
  • [36] Y. Fan, J. Yang, J. Chen, P. Hu, X. Wang, J. Xu, B. Zhou, A digital-twin visualized architecture for Flexible Manufacturing System, J. Manuf. Syst. 60 (2021) 176–201. https://doi.org/https://doi.org/10.1016/j.jmsy.2021.05.010.
  • [37] S. Mathupriya, S. Saira Banu, S. Sridhar, B. Arthi, Digital twin technology on IoT, industries & other smart environments: A survey, Mater. Today Proc. (2020). https://doi.org/https://doi.org/10.1016/j.matpr.2020.11.358.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3fddd3f3-a9d5-4d72-b086-9d4f4d402c1d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.