PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental and numerical analysis of fracture in 41Cr4 steel – issues of the stationary cracks

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper analyzes the process of fracture in 41Cr4 steel on the basis of experimental and numerical data obtained for non-propagating cracks. The author’s previous and latest experimental results were used to determine the apparent crack initiation moment and fracture toughness for the material under plane strain conditions. Numerical simulations were carried out to assess changes in the J-integral, the crack tip opening displacement, the size of the plastic region and the distribution of stresses around the crack tip. A complex numerical analysis based on the true stress-strain curve was performed to determine the behavior of 41Cr4 steel under increasing external loads.
Rocznik
Strony
37--63
Opis fizyczny
Bibliogr. 36 poz., tab., wykr.
Twórcy
autor
  • Kielce University of Technology, Faculty of Mechatronics and Mechanical Engineering Department of Manufacturing Engineering and Metrology Al. 1000-lecia PP 7, 25-314 Kielce, POLAND
Bibliografia
  • [1] Graba M. (2016): The problems in determining the selected mechanical properties of 41Cr4 steel Mechanik, No 08/09/2016, pp.974-983, (in Polish “Mechanik”) http://dx.doi.org/10.17814/mechanik.2016.8-9.331.
  • [2] ASTM (2005): ASTM E 1820-05 Standard Test Method for Measurement of Fracture Toughness. -American Society for Testing and Materials.
  • [3] PN-87/H-4335, Metals - Test method for measurement of the fracture toughness for plane strain conditions.
  • [4] SINTAP (1999): Structural Integrity Assessment Procedures for European Industry. Final Procedure, Brite-Euram Project No BE95-1426. - Rotherham: British Steel.
  • [5] Landes J.D. and Begley J.A. (1971): The Effect of Specimen Geometry on JIC, Fracture Toughness. Proceedings of the 1971 National Symposium on Fracture Mechanics, Part II, ASTM STP 514, American Society for Testing and Materials, pp.24-39.
  • [6] Landes J.D. and Begley J.A. (1974): Test Results from J-Integral Studies: An Attempt to Establish a JIC Testing Procedure Fracture Analysis. ASTM STP 560, American Society for Testing and Materials, pp.170-186.
  • [7] FITNET Report, (European Fitness-for-service Network), Edited by M. Kocak, S. Webster, J.J. Janosch, R.A. Ainsworth, R. Koers, Contract No. G1RT-CT-2001-05071, 2006.
  • [8] Neimitz A., Dzioba I., Graba M. and Okrajni J. (2008): The assessment of the strength and safety of the operation high temperature components containing crack. Kielce University of Technology Publishing House, Kielce.
  • [9] ESIS P2-1992, ESIS Recommendations For Determining The Fracture Resistance of Ductile Materials. 1992, http://www.structuralintegrity.eu/esis/documents/esis-procedures.
  • [10] Kumar V., German M.D. and Shih C.F. (1981): An engineering approach for elastic-plastic fracture analysis. Electric Power Research Institute, Inc. Palo Alto, CA, EPRI Report NP-1931.
  • [11] ADINA 8.8, ADINA (2011): User Interface Command Reference Manual - Volume I: ADINA Solids &Structures Model Definition, Report ARD 11-2, ADINA R&D, Inc.
  • [12] ADINA 8.8, ADINA (2011): Theory and Modeling Guide - Volume I: ADINA Solids & Structures, Report ARD 11-8, ADINA R&D, Inc.
  • [13] Brocks W., Cornec A. and Scheider I. (2003): Computational Aspects of Nonlinear Fracture Mechanics. Bruchmechanik, GKSS-Forschungszentrum, Geesthacht, Germany, Elsevier, pp.127-209.
  • [14] Brocks W. and Scheider I. (2003): Reliable J-values. Numerical aspects of the path-dependence of the J-integral In incremental plasticity. Bruchmechanik, GKSS-Forschungszentrum, Geesthacht, Germany, Elsevier, pp.127-209.
  • [15] Graba M. and Gałkiewicz J. (2007): Influence of the crack tip model on results of the finite element method. Journal of Theoretical and Applied Mechanics, Warsaw, vol.45, No.2, pp.225-237.
  • [16] Shih C.F. (1981): Relationship between the J-integral and the crack opening displacement for stationary and extending cracks. Journal of the Mechanics and Physics of Solids, vol.29, pp.305-329.
  • [17] Hutchinson J.W. (1968): Singular behaviour at the end of a tensile crack in a hardening material. Journal of the Mechanics and Physics of Solids, vol.16, No.1, pp.13-31.
  • [18] Rice J.R. and Rosengren G.F. (1968): Plane strain deformation near a crack tip in a power-law hardening material. Journal of the Mechanics and Physics of Solids, vol.16, No.1, pp.1-12.
  • [19] Graba M. (2016): Numerical analysis of the influence of in-plane constraints on the crack tip opening displacement for SEN(B) specimens under predominantly plane strain conditions. International Journal of Applied Mechanics and Engineering, vol.21, No.4, pp.849–866, https://doi.org/10.1515/ijame-2016-0050.
  • [20] Neimitz A., Graba M. and Gałkiewicz J. (2007): An alternative formulation of the Ritchie-Knott-Rice local fracture criterion. Engineering Fracture Mechanics, vol.74, pp.1308-1322.
  • [21] Graba M. (2012): The proposal of three-parametric fracture criterion of brittle materials. Mechanical Review (in Polish “Przegląd Mechaniczny”), LXXI, No.2/2012, pp.24-31 (in Polish).
  • [22] Guo W. (1993): Elastoplastic three dimensional crack border field– I. Singular structure of the field. Engineering Fracture Mechanics, vol.46, No.1, pp.93-104.
  • [23] Guo W. (1993): Elastoplastic three dimensional crack border field– II. Asymptotic solution for the field. Engineering Fracture Mechanics, vol.46, No.1, pp.105-113.
  • [24] Guo W. (1995): Elasto-plastic three dimensional crack border field - III. Fracture parameters. Engineering Fracture Mechanics, vol.51, No.1, pp.51-71.
  • [25] Sumpter J.D.G. and Forbes A.T. (1992): Constraint Based Analysis of Shallow Cracks in Mild Steel. TWI/EWI/IS International Conference on Shallow Crack Fracture Mechanics Test and Application, M.G. Dawes, Ed., Cambridge, UK, paper 7.
  • [26] O’Dowd N.P. and Shih C.F. (1991): Family of crack-tip fields characterized by a triaxiality parameter – I. Structure of Fields. J. Mech. Phys. Solids, vol.39, No.8, pp.989-1015.
  • [27] O’Dowd N.P. and Shih C.F. (1992): Family of crack-tip fields characterized by a triaxiality parameter – II. Fracture Applications. J. Mech. Phys. Solids, vol.40, No.5, pp.939-963.
  • [28] Yang S., Chao Y.J. and Sutton M.A. (1993): Higher order asymptotic crack tip fields in a power-law hardening material. Engineering Fracture Mechanics, vol.19, No.1, pp.1-20.
  • [29] Graba M. (2008): The influence of material properties on the Q-stress value near the crack tip for elastic-plastic materials. Journal of Theoretical and Applied Mechanics, vol.46, No.2, pp.269-290.
  • [30] Graba M. (2012): The influence of material properties and crack length on the Q-stress value near the crack tip for elastic-plastic materials for centrally cracked plate in tension. J. Theor. Appl. Mech., vol.50, No.1, pp.23-46.
  • [31] Graba M. (2011): The influence of material properties and crack length on the Q-stress value near the crack tip for elastic-plastic materials for single edge notch plate in tension. Archives of Civil and Mechanical Engineering, vol.XI, No. 2, pp. 301-319, 2011.
  • [32] Graba M. (2013): Catalogue of maximum opening crack stress for CCT specimen assuming large strain condition. Central European Journal of Engineering, SPRINGER, DOI: 10.2478/s13531-012-0063-8.
  • [33] Graba M. (2012): Catalogue of the numerical solutions for SEN(B) specimen assuming the large strain formulation and plane strain condition. Archives of Civil and Mechanical Engineering, vol.12, No.1, pp.29-40.
  • [34] Graba M. (2013): Numerical verification of the limit load solutions for single edge notch specimen in tension. Archives of Civil and Mechanical Engineering, vol.13, No.1, pp.45-56.
  • [35] Graba M. (2017): Proposal of the hybrid solution to determining the selected fracture parameters for SEN(B) specimens dominated by plane strain. Bulletin of the Polish Academy of Sciences-Technical Science, vol.65, No.4, pp.523-532.
  • [36] Graba M. (2013): Extension of the concept of limit loads for 3D cases for a centrally cracked plate in tension. Journal of Theoretical and Applied Mechanics, vol.51, No.2, pp.349-362.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3fd4ca42-c06e-4ef3-8038-25bcd60178b8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.