Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Numerical simulations of fluid‒structure interaction (FSI) on an elastic foil heaving with constant amplitude in freestream flow are carried out at a low Reynolds number of 20,000. The commercial software STAR-CCM+ is employed to solve the flow field and the large-scale passive deformation of the structure. The results show that introducing a certain degree of flexibility significantly improves the thrust and efficiency of the foil. For each Strouhal number St considered, an optimal flexibility exists for thrust; however, the propulsive efficiency keeps increasing with the increase in flexibility. The visualisation of the vorticity fields elucidates the improvement of the propulsive characteristics by flexibility. Furthermore, the mechanism of thrust generation is discussed by comparing the time-varying thrust coefficient and vortex structure in the wake for both rigid and elastic foils. Finally, in addition to sinusoidal motions, we also consider the effect of non-sinusoidal trajectories defined by flattening parameter S on the propulsive characteristics for both rigid and elastic foils. The non-sinusoidal trajectories defined by S=2 are associated with the maximum thrust, and the highest values of propulsive efficiency are obtained with S=0.5 among the cases considered in this work.
Czasopismo
Rocznik
Tom
Strony
4--19
Opis fizyczny
Bibliogr. 41 poz., rys., tab.
Twórcy
autor
- College of Naval Architecture and Ocean Engineering Dalian Maritime University No. 1 Linghai Road, 116026 Dalian, China
autor
- College of Naval Architecture and Ocean Engineering Dalian Maritime University No. 1 Linghai Road, 116026 Dalian, China
autor
- College of Naval Architecture and Ocean Engineering Dalian Maritime University No. 1 Linghai Road, 116026 Dalian, China
autor
- College of Naval Architecture and Ocean Engineering Dalian Maritime University No. 1 Linghai Road, 116026 Dalian, China
autor
- College of Naval Architecture and Ocean Engineering Dalian Maritime University No. 1 Linghai Road, 116026 Dalian, China
Bibliografia
- 1. Y. Chen, J. Nan, and J. Wu, “Wake effect on a semi-active flapping foil based energy harvester by a rotating foil,” Computers & Fluids, vol. 160, pp. 51–63, Jan. 2018.
- 2. S. Rashidi, M. Hayatdavoodi, and J. A. Esfahani, “Vortex shedding suppression and wake control: A review,” Ocean Engineering, vol. 126, pp. 57–80, Nov. 2016.
- 3. E. Wang, Q. Xiao, Q. Zhu, and A. Incecik, “The effect of spacing on the vortex-induced vibrations of two tandem flexible cylinders,” Physics of Fluids, vol. 29, no. 7, art. no. 077103, Jul. 2017.
- 4. F. T. Muijres, P. Henningsson, M. Stuiver, and A. Hedenstrom, “Aerodynamic flight performance in flap-gliding birds and bats,” Journal of Theoretical Biology, vol. 306, pp. 120–128, Aug. 2012.
- 5. J. Zhang and X.-Y. Lu, “Aerodynamic performance due to forewing and hindwing interaction in gliding dragonfly flight,” Physical Review E, vol. 80, no. 1, art. no. 017302, Jul. 2009.
- 6. Z. Cui, Z. Yang, L. Shen, and H. Z. Jiang, “Complex modal analysis of the movements of swimming fish propelled by body and/or caudal fin,” Wave Motion, vol. 78, pp. 83–97, Apr. 2018.
- 7. W. Shyy et al., “Recent progress in flapping wing aerodynamics and aeroelasticity,” Progress in Aerospace Sciences, vol. 46, no. 7, pp. 284–327, Oct. 2010.
- 8. M. S. Triantafyllou, G. S. Triantafyllou, and D. K. P. Yue, “Hydrodynamics of fishlike swimming,” Annual Review of Fluid Mechanics, vol. 32, no. 1, pp. 33–53, 2000.
- 9. G. S. Triantafyllou, M. S. Triantafyllou, M. A. Grosenbaugh, “Optimal Thrust Development in Oscillating Foils with Application to Fish Propulsion,” Journal of Fluids and Structures, vol. 7, no. 2, pp. 205–224, 1993.
- 10. J. A. Szantyr, R. Biernacki, P. Flaszynski, P. Dymarski, and M. Kraskowski, “An experimental and numerical study of the vortices generated by hydrofoils,” Polish Maritime Research, vol. 16, no. 3, pp. 11–17, 2009.
- 11. E. J. Chae, D. T. Akcabay, A. Lelong, J. A. Astolfi, and Y. L. Young, “Numerical and experimental investigation of natural flow-induced vibrations of flexible hydrofoils,” Physics of Fluids, vol. 28, no. 7, art. no. 075102, Jul. 2016.
- 12. J. M. Anderson, K. Streitlien, D. S. Barrett, and M. S. Triantafyllou, “Oscillating foils of high propulsive efficiency,” Journal of Fluid Mechanics, vol. 360, pp. 41–72, Apr. 1998.
- 13. Koochesfahani and M. Manoochehr, “Vortical patterns in the wake of an oscillating airfoil,” AIAA Journal, vol. 27, no. 9, pp. 1200–1205, 1989.
- 14. G. Pedro, A. Suleman, and N. Djilali, “A numerical study of the propulsive efficiency of a flapping hydrofoil,” International Journal for Numerical Methods in Fluids, vol. 42, no. 5, pp. 493–526, Jun. 2003.
- 15. P. Flaszynski, J. A. Szantyr, and K. Tesch, “Numerical prediction of steady and unsteady tip vortex cavitation on hydrofoils,” Polish Maritime Research, vol. 19, no. 3, pp. 3–15, 2012.
- 16. M. S. Triantafyllou, G. S. Triantafyllou, and R. J. Gopalkrishnan, “Wake mechanics for thrust generation in oscillating foils,” Physics of Fluids A: Fluid Dynamics, vol. 3, no. 12, pp. 2835–2837, 1991.
- 17. C. Eloy, “Optimal Strouhal number for swimming animals,” Journal of Fluids and Structures, vol. 30, no. 2, pp. 205–218, Apr. 2012.
- 18. G. C. Lewin and H. Haj-Hariri, “Modelling thrust generation of a two-dimensional heaving airfoil in a viscous flow,” Journal of Fluid Mechanics, vol. 492, pp. 339–362, Oct. 2003.
- 19. Z. J. Wang, “Vortex shedding and frequency selection in flapping flight,” Journal of Fluid Mechanics, vol. 410, pp. 323–341, May. 2000.
- 20. R. Godoy-Diana, J.-L. Aider, and J. E. Wesfreid, “Transitions in the wake of a flapping foil,” Physical Review E, vol. 77, no. 1, art. no. 016308, Jan. 2008.
- 21. T. Schnipper, A. Andersen, and T. Bohr, “Vortex wakes of a flapping foil,” Journal of Fluid Mechanics, vol. 633, pp. 411–423, Aug. 2009.
- 22. A. Andersen, T. Bohr, T. Schnipper, and J. H. Walther, “Wake structure and thrust generation of a flapping foil in twodimensional flow,” Journal of Fluid Mechanics, vol. 812, art. no. R4, Feb. 2017.
- 23. D. Weihs, “Hydromechanics of fish schooling,” Nature, vol. 241, pp. 290-291, 1973.
- 24. J. Zhang, S. Childress, A. Libchaber, and M. Shelley, “Flexible filaments in a flowing soap film as a model for one-dimensional flags in a two-dimensional wind,” Nature, vol. 408, no. 6814, pp. 835-839, Dec. 2000.
- 25. G. Xue et al., “Optimal design and numerical simulation on fish-like flexible hydrofoil propeller,” Polish Maritime Research, vol. 23, no. 4, pp. 59–66, Dec. 2016.
- 26. S. Heathcote and I. Gursul, “Flexible flapping airfoil propulsion at low Reynolds numbers,” AIAA Journal, vol. 45, no. 5, pp. 1066–1079, May 2007.
- 27. S. Alben, “Optimal flexibility of a flapping appendage in an inviscid fluid,” Journal of Fluid Mechanics, vol. 614, pp. 355–380, Nov. 2008.
- 28. S. Michelin and S. G. L. Smith, “Resonance and propulsion performance of a heaving flexible wing,” Physics of Fluids, vol. 21, no. 7, art. no. 071902, Jul. 2009.
- 29. Y. Zhang, C. Zhou, and H. Luo, “Effect of mass ratio on thrust production of an elastic panel pitching or heaving near resonance,” Journal of Fluids and Structures, vol. 74, pp. 385–400, Oct. 2017.
- 30. S. Heathcote, Z. Wang, and I. Gursul, “Effect of spanwise flexibility on flapping wing propulsion,” Journal of Fluids and Structures, vol. 24, no. 2, pp. 183–199, Feb. 2008.
- 31. D. A. Read, F. S. Hover, and M. S. Triantafyllou, “Forces on oscillating foils for propulsion and maneuvering,” Journal of Fluids and Structures, vol. 17, no. 1, pp. 163–183, Jan. 2003.
- 32. Q. Xiao and W. Liao, “Numerical investigation of angle of foil,” Computers and Fluids, vol. 39, no. 8, pp. 1366–1380, Sep. 2010.
- 33. K. Lu, Y. H. Xie, and D. Zhang, “Numerical study of large amplitude, nonsinusoidal motion and camber effects on pitching airfoil propulsion,” Journal of Fluids and Structures, vol. 36, pp. 184–194, Jan. 2013.
- 34. A. Boudis, A. C. Bayeul-Laine, A. Benzaoui, H. Oualli, O. Guerri, and O. Coutier-Delgosha, “Numerical investigation of the effects of nonsinusoidal motion trajectory on the propulsion mechanisms of a flapping airfoil,” Journal of Fluids Engineering, vol. 141, no. 4, art. no. 041106, Apr. 2019.
- 35. S. A. Manjunathan and R. Bhardwaj, “Thrust generation by pitching and heaving of an elastic plate at low Reynolds number,” Physics of Fluids, vol. 32, no. 7, Jul. 2020.
- 36. R. J. Wootton, “Support and deformability in insect wings,” Journal of Zoology, vol. 193, no. 4, pp. 447–468, 1981.
- 37. J. Young and J. C. S. Lai, “Oscillation frequency and amplitude effects on the wake of a plunging airfoil,” AIAA Journal, vol. 42, no. 10, pp. 2042-2052, Oct. 2004.
- 38. S. Turek and J. Hron, Proposal for Numerical Benchmarking of Fluid-Structure Interaction between an Elastic Object and Laminar Incompressible Flow (Springer). Berlin: Springer, 2006.
- 39. G. K. Taylor, R. L. Nudds, and A. L. R. Thomas, “Flying and swimming animals cruise at a Strouhal number tuned for high power efficiency,” Nature, vol. 425, no. 6959, pp. 707–711, Oct. 2003.
- 40. K. Isogai, Y. Shinmoto, and Y. Watanabe, “Effects of dynamic stall on propulsive efficiency and thrust of flapping airfoil,” AIAA Journal, vol. 37, no. 10, pp. 1145–1151, Oct. 1999.
- 41. I. H. Tuncer and M. Kaya, “Optimization of flapping airfoils for maximum thrust and propulsive efficiency,” AIAA Journal, vol. 43, no. 11, pp. 2329–2336, Nov. 2005.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3fd09ae8-de5d-4da2-83f3-f028fd7d9453