PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Designing the optical system with a real time lighting effect control

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the paper, an effective way to design asymmetrical optics for a uniform vertical surface illumination was presented. Assessment of the obtained distribution of luminance (illuminance) on the illuminated surface is done almost at the same time as designing the optical system elements. Advantage of the final application of the presented method in 3D will be independence from the implementation of time-consuming simulations in order to verify the already designed optics. Understanding the method and its application is simple and intuitive. Observing the luminance distribution, created on the illuminated surface almost at the same time as its design, allows to see the effect of adding the next elements of the optical system on this distribution.
Twórcy
autor
  • Electrical Power Engineering Institute, Warsaw University of Technology, 75 Koszykowa St., 00-662 Warsaw, Poland
Bibliografia
  • [1] EN 12464-1:2011: Light and lighting - Lighting of work places - Part 1: Indoor work places.
  • [2] Pauley, S. M. Lighting for the human circadian clock: recent research indicates that lighting has become a public health issue. Med. Hypotheses 63 (4), 588–596 (2004).
  • [3] Rea, M. S. Light – Much more than vision, Lighting Research Center, Rensselaer Polytechnic Institute, Troy, NY, USA, https://pdfs.semanticscholar.org/db8f/5ba0be450279bce83054781b513a70fc35ff.pdf (accessed 16.04.2020).
  • [4] Bellia, L., Bisegna F. & Spada G. Lighting in indoor environments: Visual and non-visual effects of light sources with different spectral power distributions. Build. Environ. 46 (10), 1984–1992 (2011).
  • [5] Philips website, Philips luminous textile with kvadrat soft cells, https://www.largeluminoussurfaces.com/sites/default/files/PDF/TechnicalDocuments/LTPLeaflet_627x297_EU_single-page_LR.pdf (accessed 16.04.2020).
  • [6] Graßmann, C., Lempa, E., Rabe, M., Kitzig, A., Naroska, E. & Neukirch, B. Electroluminescent Textile for Therapeutic Applications. Adv. Sci.Technol. 100, 73–78 (2016).
  • [7] Luo, D., Ge, P., Liu, D. & Wang, H. A combined lens design for an LED low-beam motorcycle headlight. Lighting Res. Technol. 50 (3), 456–466 (2018).
  • [8] Zhu, Z., Peng, B., Yuan, J. & Xu, X. Design method of double freeform surface lens with diffuse reflection. Lighting Res. Technol. 52 (2), 247–256 (2019).
  • [9] Zhu, Z., Peng, B., Yuan, J. & Xu, X. Design of a combined lens for rectangular illumination. Lighting Res. Technol. 53 (1), 131–140 (2018).
  • [10] Dybczyński, W. Floodlight for illuminating a semicircular vault. Appl. Opt. 36 (25), 6480-6484 (1997).
  • [11] Dybczyński, W., Oleszyński, T. & Skonieczna, M. Designing of luminaires. 326-340 (WPB, 1996) [in Polish].
  • [12] LTI Optics, Beginner Tutorial 4 – Designing a Fresnel Lens with the Parametric Optical Design Tools, http://www.ltioptics.com/Support/doc/BeginnerTutorial4-DesignAFresnelLens.pdf (accessed 16.04.2020).
  • [13] Kari, T., Gadegaard, J., Søndergaard, T., Pedersen, T. G. & Pedersen K. Reliability of point source approximations in compact LED lens designs. Opt. Express 19 (56), A1190–A1195 (2011).
  • [14] Wester, R., Müller, G., Völl, A., Berens, M., Stollenwerk, J. & Loosen, P. Designing optical free-form surfaces for extended sources. Opt. Express 22 (S2), A552–A560 (2014).
  • [15] Shim, J., Park, C., Lee, J. & Kang, S. Design methodology for micro-discrete planar optics with minimum illumination loss for an extended source. Opt. Express 24 (16), 18607–18618 (2016).
  • [16] Żagan, W. & Krupiński, R. The Theory and Practice of Floodlighting. (OWPW, 2016) [in Polish].
  • [17] Lumileds website, Lumileds LXS9-PW30-0017 Product Datasheet, https://www.lumileds.com/uploads/396/DS113-pdf (accessed 16.04.2020).
  • [18] Kubiak, K. The superposition of light spots in calculations of reflectors for illumination. Przegląd Elektrotechniczny 89 (8), 241–244 (2013).
  • [19] Kubiak, K. Mixed reflection modeling based on a superposition of specular reflections. Przegląd Elektrotechniczny 90 (12), 79–82 (2014).
  • [20] LTI Optics, Photopia User’s Guide Version 2018.
  • [21] Stanger, D. Monte Carlo Procedures in Lighting Design. J. Illum. Eng. Soc. 13 (4), 368–371 (1984).
  • [22] Privitera, O., Liu, Y., Perera, I. U., Freyssinier, J. P. & Narendran N. Optical properties of 3D printed reflective and transmissive components for use in LED lighting fixture applications. Proceedings Volume Light-Emitting Devices, Materials, and Applications, (2019).
  • [23] Kubiak, K. Light source modeling for utilization in asymmetric reflector design for even surface illumination. in VI. IEEE Lighting Conference of the Visegrad Countries (2016).
  • [24] Kubiak, K. The formation of a trough-shaped reflector by means of superposition of a luminance distribution on an illuminated surface. in 2th European Lighting Conference Lux Europa (2013).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3fd0524b-3f6f-46b8-a184-0c7348b74c9c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.