PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The contribution of A.K. Oppenheim to explaning the nature of the initiation of gaseous detonation in tubes

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper analyzes A.K. Oppenheim’s original works on the transition of deflagration to detonation and reviews them from the perspective of new numerical and experimental results recently obtained on such phenomena. Particular attention is focused on processes happening in the boundary layer of the tube walls ahead of the accelerating flame. The results of the theoretical analyses of temperature variations inside developing boundary layer are presented and compared to the temperature variation in a free stream away from the boundary layer. Analyses of temperature increase in such layers clearly indicate that the self-ignition of the mixture happens in the boundary layer ahead of the propagating flame front. New experimental results obtained recently by a research group from the A. V. Luikov Heat and Mass Transfer Institute in Minsk, Belarus, combined with previously conducted theoretical analyses and numerical simulations, show clearly and unambiguously that the origin of the “explosion in the explosion”, postulated by A. K. Oppenheim in 1966, is always responsible for the Deflagration-Detonation Transition (DDT) in gases and is located in the boundary layer ahead of the accelerating flame front.
Rocznik
Strony
1--12
Opis fizyczny
Bibliogr. 23 poz., fot., rys.
Twórcy
  • Lawrence Livermore National Laboratory, 7000 East Ave, Livermore, CA 94550, USA
  • Aoyama Gakuin University, 4 Chome-4-25 Shibuya, Shibuya City, Tokyo 150-8366, Japan
  • Łukasiewicz Research Network - Institute of Aviation, Al. Krakowska 110/114, Warsaw, Poland
Bibliografia
  • [1] Schelkin, K.I. “Effect of tube roughness on the occurrence and propagation of detonation in gases”. Zh. Eksp. Teor. Fiz. Vol. 10 No. 7 (1940): pp. 823-827.
  • [2] P. Wolański and S. Wójcicki: “On the mechanism of influence of obstacles on the flame propagation”, Sixth International Colloquia on the Gasdynamics of Explosions and Reactive Systems pp. 69-74. Stockholm, Sweden (1977), also published in Archivum Combustionis, Vol. 1 No. 1/2, (1981).
  • [3] Woliński M. and Wolański P. “Gaseous Detonation Processes in Presence of Inert Particles.” Archivum Combustionis, Vol. 7 No. 3/4 (1987): pp. 353-370.
  • [4] Goral P., Klemens R., and Wolański P. “Mechanism of Gas Flame Acceleration in the Presence of Neutral Particles.” Progress in Astronautics and Aeronautics Vol. 113 (1987): pp. 325-335.
  • [5] Wolański P., Liu J.C., Kauffman C.W., Nicholls J.A., and Sichel M. “The Effects of Inert Particles on Methane-Air Detonations.” Archivum Combustionis Vol. 8 No. 1 (1988): pp. 15-32.
  • [6] Salamandra, G.D., Bazhenova, T.V., and Naboko I.M. “Formation of detonation wave during combustion of gas in combustion tube.” Symp. (Int.) Combust. 7: pp. 851-855. 1959.
  • [7] Babkin, V. and Kozachenko L. “The onset of detonation in a gas in tubes with rough walls.” Prikl. Mat. Tekh. Fiz. Vol. 3 (1960): pp. 165-174.
  • [8] Soloukhin, R.I. “Udarnye volny i detonatsya v gazakh.” Gosudarstvennoe Izdatelstvo fizikomatematicheskoi literatury, Moscow, Translation: “Shock waves and Detonation in Gases.” Mono Book Corp. Baltimore, USA (1963).
  • [9] Krivosheyev, P., Penyazkov, O., and Sakalou, A. “Analysis of the final stage of flame acceleration and the onset of detonation in a cylindrical tube using high-speed stereoscopic imaging.” Combustion and Flame Vol. 216 (2020): pp. 146-160.
  • [10] Oppenheim, A.K., Urtiew, P.A. and Weinberg, F. J. “On the Use of Laser Sources in Schlieren-Interferometer Systems.” Proc. Roy. Soc. Vol. A291 (1966): pp. 279-290.
  • [11] Oppenheim, A.K. “Development and structure of plane detonation waves.” 4th AGARD Combustion and Propulsion Colloquium: pp. 186-258. Milan, Italy, April 1960, Pergamon Press, London (1961)
  • Oppenheim, A.K. and Lederman, A.J. Role of Detonation in Combustion Instability. University of California, Berkeley (1964).
  • [12] Urtiew, P.A., and Oppenheim, A.K. “Experimental observations of the transition to detonation in an explosive gas.” Proc. Royal Soc. Lond. Vol. A295 (1966): pp. 13-28.
  • [13] Oppenheim, A.K. Introduction to Gasdynamics of Explosions. Vol. VI (1970): Springer-Verlag, Vienna-New York 2nd edn. 220 pp.
  • [14] Meyer, J. W., Urtiew, P. A., and Oppenheim, A. K. “On the Inadequacy of Gasdynamic Processes for Triggering the Transition to Detonation.” Combustion and Flame Vol. 14 No. 1 (February 1970).
  • [15] Wolański P. “Influence of non-isentropic processes on transition from deflagration to detonation in combustible mixtures.” Archivum Combustionis Vol. 11 No. 3-4 (1991): pp. 143-149.
  • [16] Kuhl, A.L. private communication, Jadwisin (1986).
  • [17] Frolov S.M., Noskov M.A., and Wolański P. “Auto-Ignition in Near-Wall Boundary Layer as a Cause of Deflagration to Detonation Transition.” Archivum Combustionis Vol. 14 No. 1-2 (1994): pp. 65-72.
  • [18] Noskov M.A., Frolov S.M., and Wolański P. “The Effect of Non-Isentropic Processes on Deflagration to Detonation Transition in Gaseous Combustible Mixtures.” Proceedings of the ZEL’DOVICH MEMORIAL, International Conference on Combustion Vol. 2: pp. 370-376. Moscow, Russia, September 12-17, 1994.
  • [19] Dziemińska, E., Fukuda, M., Hayashi, A.K., and Yamada, E. “Fast flame propagation in hydrogen-oxygen mixture.” Combustion Science and Technology Vol. 184 No. 10-11 (2012): pp. 1608-1615. DOI: 10.1080/00102202.2012.695252
  • [20] Machida, T., Asahara, M., Hayashi, A.K., and Tsuboi, N. “Three-Dimensional Simulation of Deflagration-to-Detonation Transition with a Detailed Chemical Reaction Model.” Combustion Science and Technology Vol. 186 No. 10-11 (2014): pp. 1758-1773, DOI: 10.1080/00102202.2014.935647
  • [21] Baranyshyn, Y. A., Krivosheyev, P. N., Penyazkov, O. G. and Sevrouk, K. L. “Flame front dynamics studies at deflagration-to-detonation transition in a cylindrical tube at low-energy initiation mode.” Shock Waves Vol. 30 (2020): pp. 305-313. DOI: 10.1007/s00193-020-00937-0
  • [22] Krivosheyev, P., Novitski, A., and Penyazkov, O. “Dynamics of the flame structure during the deflagration to detonation transition in a tube.” Dynamics of Multiphase Media Vol. DMM-21 (2021). Novosibirsk, Russia
Uwagi
1. Błędna numeracja bibliografii.
2. Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3fce5b87-84f5-405b-9a40-81855a93c2a5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.