Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Although TiNb2O7 is regarded as a material with high application potential in lithium-ion batteries (LIBs) and solid-oxide fuel cells (SOFCs), it has been difficult to find suitable cost-effective conditions for synthesizing it on a commercial scale. In this study, TiNb2O7 compounds were synthesized by a solid state synthesis process. For stoichiometrically precise synthesis of the TiNb2O7 phase, the starting materials, TiO2 and Nb2O5 were taken in a 1:1 molar ratio. Activation energy and reaction kinetics of the system were investigated at various synthesis temperatures (800,1000,1200, and 1400°C) and for various holding durations (1,5,10, and 20 h). Furthermore, change in the product morphology and particle size distribution were also evaluated as a function of synthesis temperature and duration. Additionally, quantitative phase analysis was conducted using the Rietveld refinement method. It was found that increases in the synthesis temperature and holding time lead to increase in the mean particle size from 1 to 4.5 μm. The reaction rate constant for the synthesis reaction was also calculated.
Wydawca
Czasopismo
Rocznik
Tom
Strony
1051--1056
Opis fizyczny
Bibliogr. 14 poz., rys., tab.
Twórcy
autor
- Korea Institute for Rare Metals, Korea Institute of Industrial Technology, Eleventh Floor, Get-Pearl Tower, Gaetbeol-Ro 12, Yeonsu-Gu, Incheon, South Korea
- Department of Advanced Materials Engineering, IN-HA University, Incheon, South Korea
autor
- Korea Institute for Rare Metals, Korea Institute of Industrial Technology, Eleventh Floor, Get-Pearl Tower, Gaetbeol-Ro 12, Yeonsu-Gu, Incheon, South Korea
- Department of Critical Materials and Semiconductor Packaging Engineering, University of Science and Technology, Daejeon, South Korea
autor
- Department of Materials Science and Engineering, Seoul, South Korea
autor
- Department of Advanced Materials Engineering, IN-HA University, Incheon, South Korea
autor
- Korea Institute for Rare Metals, Korea Institute of Industrial Technology, Eleventh Floor, Get-Pearl Tower, Gaetbeol-Ro 12, Yeonsu-Gu, Incheon, South Korea
- Department of Advanced Materials Engineering, IN-HA University, Incheon, South Korea
autor
- Korea Institute for Rare Metals, Korea Institute of Industrial Technology, Eleventh Floor, Get-Pearl Tower, Gaetbeol-Ro 12, Yeonsu-Gu, Incheon, South Korea
autor
- Korea Institute for Rare Metals, Korea Institute of Industrial Technology, Eleventh Floor, Get-Pearl Tower, Gaetbeol-Ro 12, Yeonsu-Gu, Incheon, South Korea
autor
- Korea Institute for Rare Metals, Korea Institute of Industrial Technology, Eleventh Floor, Get-Pearl Tower, Gaetbeol-Ro 12, Yeonsu-Gu, Incheon, South Korea
autor
- Department of Materials Science & Engineering, University of Sheffield, Sheffield S1 3JD, United Kingdom of Great Britain and Northern Ireland
autor
- Korea Institute for Rare Metals, Korea Institute of Industrial Technology, Eleventh Floor, Get-Pearl Tower, Gaetbeol-Ro 12, Yeonsu-Gu, Incheon, South Korea
- Department of Critical Materials and Semiconductor Packaging Engineering, University of Science and Technology, Daejeon, South Korea
autor
- Korea Institute for Rare Metals, Korea Institute of Industrial Technology, Eleventh Floor, Get-Pearl Tower, Gaetbeol-Ro 12, Yeonsu-Gu, Incheon, South Korea
Bibliografia
- [1] C. Jo, Y. Kim, J. Hwang, J. Shim, K. Chun, J. lee, Chem Mater. 26, 3508 (2014).
- [2] B. Guo, X. Yu, XG. Sun, M. Chi, ZA. Qiao, J. Liu, YS. Hu, XQ. Yang, JB. Goodenough, S. Dai, Energy Environ Sci. 7, 2220 (2014).
- [3] C. M. Reich, A. Kaiser, JTS. Irvine, Fuel Cells. 1, 249 (2001).
- [4] E. Da Costa, C. O. Avellaneda, A. Pawlicka, J. Mat. Sci. 36, 1407 (2001).
- [5] B. C. Yadav, A. K. Srivastava, P. K. Khanna, Int. J. Green. Nanotechnol. 3, 160 (2011).
- [6] R. A. Jat, P. Samui, N. K. Gupta, P. S. C. Parida, Thermochim. Acta. 592, 31 (2014).
- [7] L. E. Depero, L. Sangaletti, B. Allieri, M. Notaro, J. Mat. Res. 13, 1644 (1998).
- [8] M. Hirano, Y. Ichihashi, J. Mater. Sci. 44, 6135 (2009).
- [9] R. S. Roth, L. W. Coughanour, J. Res. Nat. Bur. Stand. 55, 209 (1955).
- [10] A. D. Wadsley, Acta Crystallogr. 14, 660 (1961).
- [11] A. D. Wadsley, Acta Crystallogr. 14, 664 (1961).
- [12] R. S. Roth, A. D. Wadsley, Acta Crystallogr. 18, 724 (1965).
- [13] K. U. Santosh, Chemical kinetics and reaction dynamics. New Delhi: Springer, 2006.
- [14] E. H. James, Principles of chemical kinetics. 2nd ed. New York: Academic Press, 2007.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3fc95f12-76d8-46cc-969e-79ef8358c278