PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Recovery of Fe and V via selective reduction–magnetic separation of vanadium-titanium magnetite concentrate

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
With the aim of separating Fe and V, a vanadium-titanium magnetite concentrate was selectively reduced, followed by magnetic separation. The processes accompanying reduction of the vanadium-titanium magnetite concentrate were investigated using thermodynamic simulation, experiments, scanning electron microscopy, and electron probe microanalysis. Appropriate reduction conditions and controlling the amount of CaCO3 promoted the reduction of Fe-containing minerals to metallic Fe. V was released from magnetite, ilmenite, and titanomagnetite, and was inhibited to reduce to metallic V, leading to V enrichment in the non-magnetic products in the form of oxides. Moreover, the Fe particles wrapped the slag phase when the amount of CaCO3 exceeded 8%, which is unfavourable for the magnetic separation of Fe and V. Magnetic products with an Fe content of 87.19%, Fe recovery of 82.62%, V content of 0.09% and non-magnetic products with a V content of 1.00% and a V recovery of 85.49% were obtained when the vanadium-titanium magnetite concentrate was reduced for 100 min at 1623 K with a C/O molar ratio of 2.5 and 8% CaCO3, followed by separating at a magnetic field strength of 85 mT.
Rocznik
Strony
50--62
Opis fizyczny
Bibliogr. 28 poz.
Twórcy
autor
  • College of Mining Engineering, North China University of Science and Technology, Tangshan 063210, China
autor
  • College of Mining Engineering, North China University of Science and Technology, Tangshan 063210, China
  • liguofengncu@sina.com
autor
  • College of Mining Engineering, North China University of Science and Technology, Tangshan 063210, China
autor
  • Mine Design Co., Ltd. of HBIS, Tangshan 063700, China
autor
  • College of Mining Engineering, North China University of Science and Technology, Tangshan 063210, China
Bibliografia
  • CHEN, S. Y., CHU, M. S., 2014a. A new process for the recovery of iron, vanadium, and titanium from vanadium titanomagnetite. J. South. Afr. Inst. Min. Metall. 114, 481-487.
  • CHEN, S. Y., CHU, M. S., 2014b. Metalizing reduction and magnetic separation of vanadium titano-magnetite based on hot briquetting. Int. J. Miner., Metall. Mater. 21, 225-233.
  • CHEN, S. Y., FU, X., CHU, M. S., 2015. Life cycle assessment of the comprehensive utilisation of vanadium titano-magnetite. J. Cleaner Prod. 101, 122-128.
  • CHEN, S. Y., FU, X., CHU, M. S., 2016. Carbothermic Reduction Mechanism of Vanadium-titanium Magnetite. J. Iron Steel Res. Int. 23, 409-414.
  • CHEN, C., SUN, T. C., WANG, X. P., 2017. Effects of MgO on the Reduction of Vanadium Titanomagnetite Concentrates with Char. JOM. 69, 1759-1766.
  • CHEN, C., SUN. T., KOU, J., WANG, X., ZHAO, Y., 2019. Feasibility study on preparation of magnesium titanate In carbonthermic reduction of vanadium titanomagnetite concentrates. Physicochem. Probl. Miner. Process., 55, 417-425.
  • FU, W., WEN, Y, XIE, H., 2011a. Development of Intensified Technologies of Vanadium-Bearing Titanomagnetite Smelting. J. Iron Steel Res. Int. 18, 7-18.
  • FU, W., XIE, H., 2011b. Progress in Technologies of Vanadium-Bearing Titanomagnetite Smelting in PanGang. Steel Res. Int. 82, 501-504.
  • GENG, C., SUN, T. C., YANG, H., 2015. Effect of Na2SO4 on the Embedding Direct Reduction of Beach Titanomagnetite and the Separation of Titanium and Iron by Magnetic Separation. ISIJ Int. 55, 2543-2549.
  • GENG, C., SUN, T. C., MA, Y., 2017. Effects of embedding direct reduction followed by magnetic separation on recovering titanium and iron of beach titanomagnetite concentrate. J. Iron Steel Res. Int. 24, 156-164.
  • GILLIGAN, R., NIKOLOSKI, A. N., 2020. The extraction of vanadium from titanomagnetites and other sources. Miner. Eng. 146.
  • HU, T., LV, X., BAI, C., LUN, Z., 2013. Reduction Behavior of Panzhihua Titanomagnetite Concentrates with Coal. Metall. Mater. Trans. B. 44, 252-260.
  • HUANG, X., 2013. Iron and steel metallurgy principle. Metallurgical Industry Press. Beijing, China.
  • HAO, P., GUO, J., ZHENG X., LIU, Z., TAO, C., 2018. Leaching Kinetics of Vanadium from Calcification Roasting Converter Vanadium Slag in Acidic Medium. J. Environ. Chem. Eng., 6, 5119-5124.
  • JUNG, S. M., 2015. Effects of CaO/CaCO3 on the Carbothermic Reduction of Titanomagnetite Ores[J]. Metall. Mater. Trans. B. 46, 1162–1174.
  • LV, X., LUN, Z., YIN, J., 2013. Carbothermic Reduction of Vanadium Titanomagnetite by Microwave Irradiation and Smelting Behavior. ISIJ Int., 53, 1115-1119.
  • LI, W., FU, G. Q., CHU, M. S., 2017. Reduction behavior and mechanism of Hongge vanadium titanomagnetite pellets by gas mixture of H2 and CO. J. Iron Steel Res. Int. 24, 34-42.
  • LI, W., FU, G., CHU, M., ZHU, M., 2018. Influence of V2O5 content on the gas-based direct reduction of hongge vanadium titanomagnetite pellets with simulated shaft furnace gases. JOM, 70, 76−80.
  • PARK, E., OSTROVSKI, O., 2003. Reduction of Titania-Ferrous Ore by Carbon Monoxide. ISIJ Int. 43, 1316-1325.
  • QIN, J., WANG, Y., YOU, Z., 2020. Carbonization and nitridation of vanadium–bearing titanomagnetite Turing carbothermal reduction with coal. J. Mater. Res. Technol. 9, 4272-4282.
  • TANG, J., CHU, M., FENG, C., 2016. Melting Separation Behavior and Mechanism of High-chromium Vanadium–bearing Titanomagnetite Metallized Pellet Got from Gas-based Direct Reduction. ISIJ Int. 56, 210-219.
  • WANG, S., GUO, Y., JIANG, T., 2019. Behavior of Silicon During Reduction and Smelting of Vanadium Titanomagnetite Metallized Pellets in an Electric Furnace. JOM. 71, 329-335.
  • WANG, S., GUO, Y. F., ZHENG, F. Q., 2020. Behavior of vanadium during reduction and smelting of vanadium titanomagnetite metallized pellets. Trans. Nonferrous Met. Soc. China. 30, 1687-1696.
  • WU, E. H., ZHU, R., YANG, S. L., 2016. Influences of Technological Parameters on Smelting-separation Process for Metallized Pellets of Vanadium-bearing Titanomagnetite Concentrates. J. Iron Steel Res. Int. 23, 655-660.
  • XIANG, J. Y., HUANG, Q., LV, X., BAI, C., 2018. Extraction of vanadium from converter slag by two-step sulfuric acid leaching process. J. Cleaner Prod., 170, 1089-1101.
  • ZHANG, W., ZHU, Z., CHENG, C. Y., 2011. A literature review of titanium metallurgical processes. Hydrometallurgy. 108, 177-188.
  • ZHAO, L., WANG, L., CHEN, D., ZHAO, H., 2015. Behaviors of vanadium and chromium in coal-based direct reduction of high-chromium vanadium-bearing titanomagnetite concentrates followed by magnetic separation. Trans. Nonferrous Met. Soc. China, 25, 1325-1333.
  • ZENG, R., LI, W., WANG, N., 2020. Effect of Al2O3 on the gas-based direct reduction behavior of Hongge vanadium titanomagnetite pellet under simulated shaft furnace atmosphere. Powder Technol. 376, 342-350.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3fc772a2-f714-4406-9797-82f46c415a66
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.