PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Parametric optimisation of microhardness on heat-treated electroless Ni-YSZ cermet coating

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The paper discusses the parametric optimisation of the electroless Ni-YSZ cermet coating microhardness upon heat treatment. Heat treatment is a process to increase the mechanical properties of the electroless nickel coating and it can be enhanced by manipulating its parameters. Parametric optimisation is conducted by the design of experiment full factorial 3x3 with 27 runs. Treating temperature, treating time and ceramic particle size parameters at 3-level are evaluated using statistical tool ANOVA in Minitab20. Design/methodology/approach: Ni-YSZ cermet coating is deposited onto a high-speed steel substrate using the electroless nickel co-deposition method. The temperature and time were varied in a range of 300-400°C and 0-2 hours respectively. The microhardness measurements were carried out using a Vickers microhardness tester (Shimadzu) according to ISO 6507-4. The surface characterisation was analysed using Cambridge Stereoscan 90 Scanning Electron Microscope (SEM) coupled with Energy Dispersive X-ray Analysis (EDXA). Findings: The optimum condition in obtaining high microhardness on Ni-YSZ cermet coating is evaluated by statistical tool ANOVA in Minitab20 software. It is found that the most significant parameter for high microhardness is at the treating temperature of 400°C followed by treating time at 2 hours using nano-sized YSZ particles. The ceramic particle size is found not a significant parameter in obtaining a high microhardness, however it has effect on interaction between treating temperature and treating time. Research limitations/implications: The paper only limits to the optimisation condition of microhardness on Ni-YSZ cermet coating hardness property by varying heat treatment parameters. Practical implications: The optimisation condition obtained might only applicable to the electroless Ni-YSZ cermet coating with similar electroless nickel solution and treatments. Originality/value: The value of this work is the heat treatment parametric optimisation to obtain high microhardness on electroless Ni-YSZ cermet coating by using the design of experiment 3-level full factorial.
Rocznik
Strony
33--41
Opis fizyczny
Bibliogr. 23 poz., rys., tab., wykr.
Twórcy
  • Faculty of Engineering Technology, University College TATI (UC TATI), 24000 Kemaman, Terengganu, Malaysia
  • Faculty of Engineering Technology, University College TATI (UC TATI), 24000 Kemaman, Terengganu, Malaysia
  • School of Engineering, University of Edinburgh, Edinburgh EH8 9QT, Scotland, UK
autor
  • Faculty of Manufacturing Engineering, University Technology Malaysia, Skudai, Johor, Malaysia
Bibliografia
  • [1] J. Sudagar, J. Lian, W. Sha, Electroless nickel, alloy, composite and nano coatings - A critical review, Journal of Alloys and Compounds 571 (2013) 183-204. DOI: https://doi.org/10.1016/j.jallcom.2013.03.107
  • [2] O.A. Glotka, Modelling the composition of carbides in nickel-based superalloys of directional crystallization, Journal of Achievements in Materials and Manufacturing Engineering 102/1 (2020) 5-15. DOI: https://doi.org/10.5604/01.3001.0014.6324
  • [3] N. Bahiyah Baba, A. Davidson, T. Muneer, YSZ-reinforced Ni-P deposit: An effective condition for high particle incorporation and porosity level, Advanced Materials Research 214 (2011) 412-417. DOI: https://doi.org/10.4028/www.scientific.net/AMR.214.412
  • [4] A. Ahmadi Ashtiani, S. Faraji, S. Amjad-Iranagh, A.H. Faraji, The study of electroless Ni-P alloys with different complexing agents on Ck45 steel substrate, Arabian Journal of Chemistry 10/S2 (2017) S1541-S1545. DOI: https://doi.org/10.1016/j.arabjc.2013.05.015
  • [5] M. Trzaska, A. Mazurek, Nanocomposite Ni/diamond layers produced by the electrocrystallization method, Journal of Achievements in Materials and Manufacturing Engineering 75/1 (2016) 34-40. DOI: https://doi.org/10.5604/17348412.1228367
  • [6] D. Ahmadkhaniha, C. Zanella, The Effects of Additives, Particles Load and Current Density on Codeposition of SiC Particles in NiP Nanocomposite Coatings, Coatings 9/9 (2019) 554. DOI: https://doi.org/10.3390/coatings9090554
  • [7] N.B. Baba, M.F. Omar, S. Sharif, S.B. Mohamed, Processing and properties of Ni/YSZ composite coating on high speed steel cutting tool, Journal of Fundamental and Applied Sciences 10/2S (2018) 688-700.
  • [8] Y. de Hazan, D. Werner, M. Z'graggen, M. Groteklaes, T. Graule, Homogeneous Ni-P/Al2O 3 nanocomposite coatings from stable dispersions in electroless nickel baths, Journal of Colloid and Interface Science 328/1(2008) 103-109. DOI: https://doi.org/10.1016/j.jcis.2008.08.033
  • [9] S.M.A. Shibli, V.S. Dilimon, T. Deepthi, ZrO 2-reinforced Ni-P plate: An effective catalytic surface for hydrogen evolution, Applied Surface Science 253/4(2006) 2189-2195. DOI: https://doi.org/10.1016/j.apsusc.2006.04.025
  • [10] M. Buchtík, M. Krystýnová, J. Másilko, J. Wasserbauer, The Effect of Heat Treatment on Properties of Ni–P Coatings Deposited on a AZ91 Magnesium Alloy, Coatings 9/7 (2019) 461. DOI: https://doi.org/10.3390/coatings9070461
  • [11] K. Shahzad, E.M. Fayyad, M. Nawaz, O. Fayyaz, R.A. Shakoor, M.K. Hassan, M.A. Umer, M.N. Baig, A. Raza, A.M. Abdullah, Corrosion and Heat Treatment Study of Electroless NiP-Ti Nanocomposite Coatings Deposited on HSLA Steel, Nanomaterials 10/10 (2020)1932. DOI: https://doi.org/10.3390/nano10101932
  • [12] J.T. Winowlin Jappes, N.C. Brintha, M. Adam Khan, Effect of Magnetic Field, Heat Treatment and Dry Wear Analysis on Electroless Nickel Deposits, Journal of Bio- and Tribo- Corrosion 7 (2021) 20. DOI: https://doi.org/10.1007/s40735-020-00434-y
  • [13] A. Moshood Abioye, S. Faraji, F.N. Ani, Effect of Heat Treatment on The Characteristics of Electroless Activated Carbon-Nickel Oxide Nanocomposites, Jurnal Teknologi 79/7-3 (2017) 61-67. DOI: https://doi.org/10.11113/jt.v79.11898
  • [14] K. Uday Venkat Kiran, A. Arora, B. Ratna Sunil, R. Dumpala, Effect of heat treatment on the temperaturę dependent wear characteristics of electroless Ni-P-BN(h) composite coatings, SN Applied Sciences 2(2020) 1101. DOI: https://doi.org/10.1007/s42452-020-2920-z
  • [15] S. Arulvel, D. Dsilva Winfred Rufuss, Shlok Shreedhar Sharma, Arnab Mitra, A. Elayaperumal, M.S. Jagatheeshwaran, A novel water quench approach for enhancing the surface characteristics of electroless nickel phosphorous deposit, Surfaces and Interfaces 23(2021) 100975. DOI: https://doi.org/10.1016/j.surfin.2021.100975
  • [16] A. Biswas, S.K. Das, P. Sahoo, Correlating tribological performance with phase transformation behavior for electroless Ni-(high)P coating, Surface and Coatings Technology 328 (2017) 102-114. DOI: https://doi.org/10.1016/j.surfcoat.2017.08.043
  • [17] P. Sampath Kumar, P. Kesavan Nair, Studies on crystallization of electroless Ni-P deposits, Journal of Materials Processing Technology 56/1-4 (1996) 511-520. DOI: https://doi.org/10.1016/0924-0136(96)85110-7
  • [18] D. Ahmadkhaniha, F. Eriksson, C. Zanella, Optimizing Heat Treatment for Electroplated NiP and NiP/SiC Coatings, Coatings 10/12 (2020) 1179. DOI: https://doi.org/10.3390/coatings10121179
  • [19] S. Sarkar, R.K. Baranwal, R. Nandi, M.G. Dastidar, J. De, G. Majumdar, Parametric Optimization of Surface Roughness of Electroless Ni-P Coating, in: M. Tyagi, A. Sachdeva, V. Sharma (eds), Optimization Methods in Engineering. Lecture Notes on Multidisciplinary Industrial Engineering, Springer, Singapore, 2021, 197-207. DOI: https://doi.org/10.1007/978-981-15-4550-4_12
  • [20] B.A. Lyashenko, Z.A. Stotsko, O.A. Kuzin, M.O. Kuzin, V.A. Mechnik, Analysis of friction interaction and optimisation of detail surface hardening technologies using non-local mathematical models, Journal of Achievements in Materials and Manufacturing Engineering 100/1 (2020) 20-25. DOI: https://doi.org/10.5604/01.3001.0014.1960
  • [21] N. Bahiyah Baba, A. Davidson, T. Muneer, Investigation of Ni-YSZ composite manufactured by electroless Ni coating, Applied Mechanics and Materials 52-54 (2011) 1660-1664. DOI: https://doi.org/10.4028/www.scientific.net/AMM.52-54.1660
  • [22] J.N. Balaraju, Kalavati, K.S. Rajam, Influence of particle size on the microstructure, hardness and corrosion resistance of electroless Ni-P-Al2O 3 composite coatings, Surface and Coatings Technology 200/12-13 (2006) 3933-3941. DOI: https://doi.org/10.1016/j.surfcoat.2005.03.007
  • [23] N. Beigi Khosroshahi, R. Azari Khosroshahi, R. Taherzadeh Mousavian, D. Brabazon, Effect of electroless coating parameters and ceramic particle size on fabrication of a uniform Ni–P coating on SiC particles, Ceramics International 40/8A (2014) 12149-12159. DOI: https://doi.org/10.1016/j.ceramint.2014.04.055
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3fc30ff5-5497-43ba-895e-69301b98bc05
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.