PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of forming thin titanium panels with stiffeners

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The growing demand for light and durable products has caused an increase in interest in products formed of thin sheets. In order to ensure sufficient stiffness of the drawn - parts, stiffening is often performed. Unfortunately, during the forming of stiffeners unwanted deformations of the drawn parts very often appear, which prevent them from further exploitation. In the paper, forming thin titanium panels with stiffeners is analysed. The panels are made of sheets of commercially pure titanium: Grades 2, 3 and 4. In the results of numerical analyses which were performed using PamStamp 2G, taking into consideration the impact of the blank holder force and friction conditions on the strain distribution in the drawn parts, sheet thinning and springback values are presented. The numerical analysis results were compared with the experimental tests. It was concluded that in order to prevent panel deformation being a result of residual stresses, it is necessary to ensure adequate friction conditions on the contact surfaces between the deformed material and tools as well as a suitable blank holder force.
Twórcy
autor
  • Czestochowa University of Technology, Dabrowskiego 69, 42-201 Czestochowa, Poland
  • Czestochowa University of Technology, Dabrowskiego 69, 42-201 Czestochowa, Poland
autor
  • Fabryka Narzędzi Medycznych Chirmed, Mstowska 8, 42-240 Rudniki K. Częstochowy, Poland
Bibliografia
  • [1] J. Winowiecka, K. Adamus, Key Eng. Mat. 687, 250 (2016).
  • [2] N. Yi, T. Hama, A. Kobuki, H. Fujimoto, H. Takuda, Mat. Sci. Eng. A 655, 70 (2016).
  • [3] J. Adamus in: E. Onate, D.R.J. Owen, D. Peric, B. Suarez (Eds), Proceedings of the 12th Int. Conf. on Computational Plasticity. Fundamentals and Applications COMPLAS XII, Barcelona-Spain, 2013.
  • [4] C. Cui, B.M. Hu, L. Zhao, S. Liu, Mater. Design 32, 1684 (2011).
  • [5] H. Yang, X.G. Fan, Z.C. Sun, L.G. Guo, M. Zhan, Science China Technological Sciences 54/2, 490 (2011).
  • [6] E. Aghion, B. Bronfin, D. Eliezer, J. Mater. Process. Tech. 117, 381 (2001).
  • [7] R.R. Boyer, R.D. Briggs, J. Mater. Eng. Perform. 14, 681 (2005).
  • [8] T. Dursun, C. Soutis, Mater. Design 56, 862 (2014).
  • [9] J.C. Williams, Jr E.A. Starke, Acta Mater. 51, 5775 (2003).
  • [10] FAA Federal Aviation Regulations (FAR PART 23.1191).
  • [11] J. Adamus, P. Lacki, Meccanica 51 (2), 391 (2016)
  • [12] J. Adamus, P. Lacki, in: E. Oñate, D.R.J. Owen, D. Peric, M. Chiumenti (Eds) Proceedings of the 13th International Conference on Computational Plasticity - Fundamentals and Applications, COMPLAS XIII, Barcelona-Spain, CIMNE, 204, (2015).
  • [13] J. Adamus, P. Lacki, M. Motyka, K. Kubiak, in: Proceedings of the 12th World Conference on Titanium - Ti 2011, Science Press Beijing, China1 337 (2012).
  • [14] G. Ambrogio, L. Filice, F. Gagliardi, Mater. Design 34, 501 (2012).
  • [15] M. Nakai, M. Niinomi, J. Hieda, K. Cho, Y. Nagasawa, T. Konno, Y. Ito, Y. Itsumi, H. Oyama, Mater. Sci. Eng. A 594, 103 (2014).
  • [16] J. Adamus, P. Lacki, Comp. Mater. Sci. 50, 1305 (2011).
  • [17] S. Wang, Z. Liao, Y. Liu, W. Liu, Surf. Coat. Tech. 252, 64 (2014).
  • [18] J. Adamus, K. Dyja, W. Więckowski, Key Eng. Mat. 687, 163 (2016).
  • [19] J. Adamus, J.M. Lacker, Ł. Major: Arch. Civ. Mech. Eng. 13, 64 (2013).
  • [20] J. Ma, H. Yang, H. Li, D. Wang, W.-J. Li, Trans. Nonferrous Met. Soc. China 25, 2924 (2015). ]
  • [21] K. Mori, T. Murao, Y. Harada, Transaction of the NAMRI/SME 30, 25 (2002).
  • [22] J. Adamus, P. Lacki, M. Motyka, Arch. Civ. Mech. Eng. 15 (1), 42 (2015).
  • [23] Lacki, K. Adamus, K. Wojsyk, M. Zawadzki, Key Eng. Mat. 473, 540 (2011).
  • [24] P. Lacki, in: E.Onate, D.R.J. Owen, D.Peric, B.Suarez (Eds), Proceedings of the 12th Int. Conf. on Computational Plasticity. Fundamentals and Applications COMPLAS XII, Barcelona-Spain, 2013.
  • [25] P. Lacki, K. Adamus, P. Wieczorek, Comp. Mater. Sci. 94, 17 (2014).
  • [26] E. Schubert, M. Klassen, C. Zerner, C. Walz, G. Seplod, J. Mater. Process. Tech. 115, 2 (2001).
  • [27] S.M.O. Tavares, Mater. Sci. Forum 8, 219 (2012).
  • [28] C. Bitondo, U. Prisco, A. Squillace, G. Giorleo, P. Buonadonna, G. Dionoro, G. Campanile, International Journal of Material Forming 3 (1), 1079 (2010).
  • [29] A. Derlatka, K. Kudła, K. Makles, in: 11th World Congress on Computational Mechanics WCCM 2014, 5th European Conference on Computational Mechanics ECCM 2014, 6th European Conference on Computational Fluid Dynamics ECFD 2014, code 110475, 6807 (2014).
  • [30] PN-EN ISO 6892-1:2010P Metallic materials - Tensile testing - Part 1: Method of test at room temperature.
  • [31] J. Winowiecka, P. Lacki: Calculation of the Forming Limit Curve for titanium grade 2 using modified geometry of samples. Computer Methods in Materials Science 15, 37 (2015).
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3fbed126-0e91-43c1-9900-5a1723739e5b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.