PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Petrogenesis of kyanite-quartz segregations in mica schists of the Western Tatra Mountains (Slovakia)

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the Tatra Mountains (Slovakia) metamorphic complex, kyanite-quartz segregations with biotite-rich selvage occur in mylonitized mica schists. In this paper, the problem of fluid flow and aluminium mobility during the uplift of the crystalline massif, and the position of the segregations in the history of Western Tatra metamorphic complex, is adressed. The reaction Alm + Rt  Ilm + Ky + Qtz is considered to be the result of a pressure drop from above to below 9 kbar. Ti-in-biotite geothermometry shows the temperature range to be 579- 639ºC that is related to heating and decompression associated with granite intrusion. Major-element mass-balance calculations show that Al remained stable in the selvage + segregation system whereas other elements (e.g. Cr, HFSE) were mobilized. The kyanite-quartz segregations formed from local fluids generated during dehydration of the metapelitic rocks during uplift. The main mechanism was likely diffusion-driven mass-transfer into extensionrelated cracks.
Czasopismo
Rocznik
Strony
99--120
Opis fizyczny
Bibliogr. 38 poz., tab., rys.
Twórcy
autor
  • University of Silesia, Faculty of Earth Sciences, ul. Będzińska 60, 41-200 Sonowiec, Poland
autor
  • University of Silesia, Faculty of Earth Sciences, ul. Będzińska 60, 41-200 Sonowiec, Poland
autor
  • University of Silesia, Faculty of Earth Sciences, ul. Będzińska 60, 41-200 Sonowiec, Poland
autor
  • Geological Survey of Norway (NGU), Leiv Eirikssons vei 39, 7040 Trondheim, Norway
autor
  • Polish Geological Institute, Rakowiecka 4, Warsaw, Poland
Bibliografia
  • Allaz, J., Maeder, X., Vannay, J.C., & Steck, A. (2005). Formation of aluminosilicate-bearing quartz veins in the Simano nappe (Central Alps): structural, thermobarometric and oxygen isotope constraints. Schweizerische Mineralogische und Petrographische Mitteilungen, 85, 191-214.
  • Ague, J. J. (2011). Extreme channelization of fluid and the problem of element mobility during Barrovian metamorphism. American Mineralogist, 96, 333-352. DOI: 10.2138/am.2011.3582.
  • Burda, J., & Gawęda, A. (1997). Mass-balance calculations in migmatites from the Upper Kościeliska Valley (The Western Tatra Mts., S-Poland). Mineralogia Polonica, 28(1), 53-68.
  • Burda, J., & Gawęda, A. (1999). Petrogeneza migmatytów z Górnej części Doliny Kościeliskiej w Tatrach Zachodnich. Archiwum Mineralogiczne, 52(2), 163-194.
  • Burda, J., & Gawęda, A. (2009). Shear-influenced partial melting in the Western Tatra metamorphic complex: Geochemistry and geochronology. Lithos, 110, 373-385. DOI: 10.1016/j.lithos.2009.01.010.
  • Burda, J., Gawęda, A., & Klötzil, U. (2011). Magma hybridization in the Western Tatra Mts. granitoid intrusion (S-Poland, Western Carpathians). Mineralogy and Petrology, 103, 19-36. DOI 10.1007/s00710-011-0150-1.
  • Burda, J., Gawęda, A., & Klötzil, U. (2013). U-Pb zircon age of the youngest magmatic activity in the High Tatra granites (Central Western Carpathians). Geochronometria, 40(2), 134-144. DOI 10.2478/s13386-013-0106-9.
  • Cathelineau, M., & Nieva, D. (1985). A chlorite solid solution geothermometer the Los Azufres (Mexico) geothermal system. Mineralogy and Petrology, 91, 235-244.
  • Deditius, A. (2004). Petrology and isotopic age of the muscovite blasthesis from the mylonitic zones in the crystalline rocks of the Western Tatra Mountains). Geologia 16. University of Silesia publishing House (in Polish, English abstract).
  • Ferry, J. M., & Spear, F. S. (1978). Experimental calibration of the partitioning of Fe and Mg between biotite and garnet. Mineralogy and Petrology, 66, 113-117.
  • Gaft, M., Strek, W., Nagli, L., Panczer, G., Rossma, G.R., & Marciniak, L. (2012). Laser-induced time-resolve luminescence of natural sillimanite Al2SiO5 and synthetic Al2SiO5 activated by chromium. Journal of luminescence, 132, 2855-2862. DOI 10.1016/j.jlumin.2012.04.045.
  • Gawęda, A. (2009). Enklawy w granicie Tatr Wysokich (ed.3). Katowice: Wydawnictwo Uniwersytetu Śląskiego.
  • Gawęda, A., & Burda, J. (2004). Ewolucja metamorfizmu i deformacji w kompleksie krystalicznym Tatr Zachodnich. Geologia, 16, 153-185.
  • Gawęda, A., & Włodyka, R. (2012). The origin of post magmatic Ca-Al minerals in granite- diorite mingling zones: the Tatra granitoid intrusions, Western Carpathians. Neues Jahrbuch für Mineralogie-Abhandlungen, 190(1), 29-47. DOI 10.1127/0077-7757/2012/0228.
  • Gawęda, A., & Kozłowski, K. (1998). Magmatic and metamorphic evolution of the Polish part of the Western Tatra crystalline basement (S-Poland, W-Carpathians). XVI Congress of CBGA, Wienna, 117.
  • Gawęda, A., & Golonka, J. (2011). Variscan plate dynamics in the circum- Carpathian area. Geodynamica Acta, 24, 141-155. DOI: 10.3166/ga.24.141-155.
  • Gawęda, A., & Szopa, K. (2011). The origin of magmatic layering in the High Tatra granite, Central Western Carpathians – implications for the formation of granitoid plutons. Transactions of the Royal Society of Edinburgh Earth Sciences,102, 1-16. DOI 10.1017/S1755691012010146.
  • Gorek, A. (1956). Geologicka Stavba Zapadnych Tatier. Geologický Sbornik Slovenske Akadémie Vied. Bratislava, VII.
  • Gorek, A. (1969). Postavenie zvyskov metamorfovaneho plasta v granitoidnom masive Vysokych Tatier a ich vztah v Zapadnych Tatrach. Geologica, 4, 103-115.
  • Henry, D. J., Guidotti, Ch., & Thomson, J. A. (2005). The Ti-saturation surface for low-to-medium pressure metapelitic biotites: Implications for geothermometry and Ti-substitution mechanisms. American Mineralogist, 90, 316-328. DOI: 10.2138/am.2005.1498.
  • Indares, A., & Martignole, J. (1985). Biotite- garnet geotermometry in the granulite facies: the influence of Ti and Al in biotite. American Mineralogist, 70, 272-278.
  • Janák, M., O`Brien, J. P., Hurai, V., & Reutel, C. (1996). Metamorphic evolution and fluid composition of garnetclinopyroxene amphibolites from the Tatras Mountains, Western Carpathians. Lithos, 39, 57-79.
  • Janák, M., Plasienka, D., & Petrik, I. (2001). Extrusion to the Tatra Mountains, Central Western Carpathians: Tectonometamorphic records of Variscan and Alpine Orogeny. Geolines, 13, 141-148.
  • Kohút, M., & Janák, M. (1994). Granitoids of the Tatra Mts., Western Carpathians: Field relations and petrogenetic implications. Geologica Carpathica, 45(5), 301-311.
  • Lavaure, S., & Sawyer, E. W. (2011). Source of biotite in the Wuluma Pluton: Replacement of ferromagnesian phases and disaggregation of enclaves and schlieren. Lithos, 125, 757-780. DOI: 10.1016/j.lithos.2011.04.005.
  • Moussallam, Y., Schneider, D. A., Janák, M., Thoni, M., & Holm, D. K. (2012). Heterogeneous extrusion and exhumation of deep-crustal Variscan assembly: Geochronology of the Western Tarta Mountains, northen Slovakia. Lithos, 144-145, 88-108. DOI: 10.1016/j.lithos.2012.03.025.
  • Müller, A., van den Kerhof, A. M., & Broekmans, M. A. T. M. (2011). Trace element content and optical cathodoluminescence of kyanite. X International Congress for Applied Mineralogy, Trondheim, 453-461. DOI: 10.1007/978-3-642-27682-8_54.
  • Olsen, S. N. (1984). Mass-balance and mass-transfer in migmatites from the Colorado Front Range. Contribution to Mineralogy and Petrology, 85, 30-44.
  • Pearson, G. R., & Shaw, D. M. (1960). Trace elements in kyanite, sillimanite and andalusite. American Mineralogist, 45, 808-817.
  • Pyka, P., Szopa, K., Gawęda, A., & Krzykawski, T. (2013a). Kyanite-quartz segregations in the metamorphic complex of the Western Tatra Mountains, Central Western Carpathians. In: Broska, I., & Tomašových, A. (Eds.): GEEWEC 2013. Geological evolution of the Western Carpathians: new ideas in the field of interregional correlations. Abstract book. Bratislava: Geological Institute, Slovak Academy of Science.
  • Pyka, P., Szopa, K., & Gawęda, A. (2013b). Megacrysts of kyanite from Baranèc Mt., Western Tatra Mountains, Slovakia. Mineralogia, 44 (1-2), 35-41. DOI: 10.2478/mipo-2013-0002.
  • Ruggieri, G., Dallai, L., Nardini, I., Henriquez, E. I., & Arias, A. (2010). Thermo-chemical variatons of the hydrothermal fuids in the Berlin Geothermal Field (El Salvador). World Geothermal Congress Proceedings, Bali, Indonesia, 1-7.
  • Spear, F. S. (1993). Metamorphic Phase Equilibria and Pressure- temperature- time paths (ed. 1). Waszyngton: MSA Monograph.
  • Sun, S. S., & McDonough, W. F. (1989). Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In Magmatism in the Ocean Basins. Saunders, A. D. and Norry, M. J. (Editors), Geological Society of London, 42, 313-345. DOI: 10.1144/GSL.SP.1989.042.01.19.
  • Taylor, S. R., & McLennan, S. M. (1981). The composition and evolution of the continental crust–Rare Earth Element evidence from sedimentary rocks. Philosophical Transactions of the Royal Society of London, 301(1461), 381-399.
  • Whitney, D. L. (2002). Coexisting andalusite, kyanite and sillimanite: Sequential formation of three Al2SiO5 polymorphs during progressive metamorphism near the triple point, Sivrihisar, Turkey. American Mineralogist, 87, 405-416.
  • Widmer, T., &, Thompson, A. B. (2001). Local origin of high pressure vein material in eclogite facies rocks of the Zermatt-Saas Zone, Switzerland. American Journal of Science, 301, 627-656.
  • Yardley, B. W. D. (1989). An introduction to metamorphic petrology (1st edition); Longman Scientific & Technical.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3fbd7b2a-bbea-4eae-823f-55067d0dd260
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.