Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
We define a pair of non-commutative processes on a perturbed Fock space. Both processes have the same univariate distributions and satisfy a weak form of the polynomial martingale property. The processes give two non-equivalent Fock-space realizations of the same classical Markov process: the two-parameter bi-Poisson processes introduced in [12], and constructed in [13].
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
301--313
Opis fizyczny
Bibliogr. 18 poz.
Twórcy
autor
- Department of Mathematics, University of Cincinnati, Cincinnati, OH 45221-0025, USA
autor
- Mathematical Institute, University of Wrocław, pl. Grunwaldzki 2/4, 50-384 Wrocław, Poland
- Department of Mathematics and Cybernetics, University of Economics, ul. Komandorska 118/120, 53-345 Wrocław, Poland
Bibliografia
- [1] L. Accardi and M. Bożejko, Interacting Fock spaces and Gaussianization of probability measures, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 1 (4) (1998), pp. 663-670.
- [2] M. Anshelevich, Partition-dependent stochastic measures and q-deformed cumulants, Doc. Math. 6 (2001), pp. 343-384 (electronic).
- [3] M. Anshelevich, q-Lévy processes, J. Reine Angew. Math. 576 (2004), pp. 181-207. arXiv:math.OA/03094147.
- [4] M. Anshelevich, Linearization coefficients for orthogonal polynomials using stochastic processes, Ann. Probab. 33 (1) (2005), pp. 114-136. arXiv:math.CO/0301094.
- [5] S. Belavkin, Personal communication, June 2004.
- [6] P. Biane, M. Capitaine, and A. Guionnet, Large deviation bounds for matrix Brownian motion, Invent. Math. 152 (2) (2003), pp. 433-459.
- [7] M. Bożejko, B. Kümmerer, and R. Speicher, q-Gaussian processes: non-commutative and classical aspects, Comm. Math. Phys. 185 (1) (1997), pp. 129-154.
- [8] M. Bożejko and R. Speicher, An example of a generalized Brownian motion, Comm. Math. Phys. 137 (3) (1991), pp. 519-531.
- [9] M. Bożejko and R. Speicher, ѱ-independent and symmetrized white noises, in: Quantum Probability & Related Topics, QP-PQ, VI, World Scientific, River Edge, NJ, 1991, pp. 219-236.
- [10] M. Bożejko and J. Wysoczański, Remarks on t-transformations of measures and convolutions, Ann. Inst. H. Poincaré Probab. Statist. 37 (6) (2001), pp. 737-761.
- [11] M. Bożejko and H. Yoshida, Generalized q-deformed Gaussian random variables, in: Quantum Probability, M. Bożejko, W. Młotkowski, and J. Wysoczański (Eds.), Banach Center Publ., Vol. 73, 2006, pp. 127-140.
- [12] W. Bryc, W. Matysiak, and J. Wesołowski, Quadratic harnesses, q-commutations, and orthogonal martingale polynomials, Trans. Amer. Math. Soc. 359 (2007), pp. 5449-5483. arxiv.org/abs/math.PR/0504194.
- [13] W. Bryc, W. Matysiak, and J. Wesołowski, The bi-Poisson process: a quadratic harness, Ann. Probab. 36 (2008), pp. 623-646. arxiv.org/abs/math.PR/0510208.
- [14] W. Bryc and J. Wesołowski, Bi-Poisson process, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 10 (2007), pp. 277-291. arxiv.org/abs/math.PR/0404241.
- [15] E. G. Effros and M. Popa, Feynman diagrams and Wick products associated with q-Fock space, Proc. Natl. Acad. Sci. USA 100 (15) (2003), pp. 8629-8633 (electronic).
- [16] W. Ejsmont, Noncommutative characterization of free Meixner processes, Electron. Comm. Probab. 18 (12) (2013), pp. 1-12.
- [17] P. Neu and R. Speicher, Spectra of Hamiltonians with generalized single-site dynamical disorder, Z. Phys. B 95 (1994), pp. 101-111.
- [18] N. Saitoh and H. Yoshida, q-deformed Poisson random variables on q-Fock space, J. Math. Phys. 41 (8) (2000), pp. 5767-5772.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3fbd0a81-325a-4076-92b1-7349f2426111