PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Performance study of alkali-activated phosphate slag-granulated blast furnace slag composites: effect of the granulated blast furnace slag content

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Alkali-activated materials (AAMs) are a kind of hardened slurry produced by an alkali activation reaction between a silicate precursor and an alkali activator that is treated as an environmentally friendly cementitious material that can be used in place of ordinary Portland cement (OPC). However, some studies point out that the AAMs with a single precursor had some defects. To realize the high value-added utilization of phosphorus slag (PS), this paper mixed PS with granulated blast furnace slag (GBFS) to prepare alkali-activated composite cementitious materials. The workability, mechanical properties, and hydration of alkali-activated phosphorus slag—granulated blast furnace slag (AAPG) were characterized using fluidity, setting time, compressive strength, flexural strength, hydration heat, XRD, FTIR, TG-DSC, and SEM + EDS. The results show that GBFS can improve the fluidity of AAPG, but the slurry will flash set after exceeding 20% GBFS content. GBFS can rapidly hydrate to generate C-S–H to improve its early strength, but the later stage results in larger pores due to the uneven distribution of matrix products. The hydration generation products of AAPG are C-S–H and C-(N)-A-S–H dominated by the Q2 unit, with some hydrotalcite by-products generated.
Rocznik
Strony
art. no. e181, 2023
Opis fizyczny
Bibliogr. 51 poz., rys., wykr.
Twórcy
  • School of Civil Engineering, Jilin University of Architecture and Technology, Changchun 130114, China
  • School of Civil Engineering, Shenyang Jianzhu University, Shenyang 110168, China
autor
  • School of Civil Engineering, Shenyang Jianzhu University, Shenyang 110168, China
autor
  • School of Science, Shenyang Jianzhu University, Shenyang 110168, China
Bibliografia
  • 1. Nidheesh PV, Kumar MS. An overview of environmental sustainability in cement and steel production. J Clean Prod. 2019;231:856–71.
  • 2. Provis JL, Bernal SA. Geopolymers and related alkali-activated materials. Annu Rev Mater Res. 2014;44:299–327.
  • 3. Turner LK, Collins FG. Carbon dioxide equivalent (CO2-e) emis- sions: a comparison between geopolymer and OPC cement con- crete. Constr Build Mater. 2013;43:125–30.
  • 4. Aliabdo AA, Abd Elmoaty M, Emam MA. Factors affecting the mechanical properties of alkali activated ground granulated blast furnace slag concrete. Constr Build Mater. 2019;197:339–55.
  • 5. Reddy KC, Gudur C, Subramaniam KVL. Study on the influences of silica and sodium in the alkali-activation of ground granulated blast furnace slag. Constr Build Mater. 2020;257:119514.
  • 6. Sasui S, Kim G, Nam J, Koyama T, Chansomsak S. Strength and microstructure of class-C fly ash and GGBS blend geopolymer activated in NaOH & NaOH+ Na2SiO3. Materials. 2019;13(1):59.
  • 7. Sanchindapong S, Narattha C, Piyaworapaiboon M, Sinthupinyo S, Chindaprasirt P, Chaipanich A. Microstructure and phase characterizations of fly ash cements by alkali activation. J Therm Anal Calorim. 2020;142(1):167–74.
  • 8. Hen L, Wang Z, Wang Y, Feng J. Preparation and properties of alkali activated metakaolin-based geopolymer. Materials. 2016;9(9):7677.
  • 9. El Hafid K, Hajjaji M, El Hafid H. Influence of NaOH concentration on microstructure and properties of cured alkali-activated calcined clay. J Build Eng. 2017;11:158–65.
  • 10. Huang G, Yang K, Sun Y, Lu Z, Zhang X, Zuo L, Xu Z. Influence of NaOH content on the alkali conversion mechanism in MSWI bottom ash alkali-activated mortars. Constr Build Mater. 2020;248:118582.
  • 11. Elmannaey AS, Fouad HEE, Youssef YG. Improvement of swell- ing chlorite soil using sodium silicate alkali activator. Ain Shams Eng J. 2021;12(2):1535–44.
  • 12. Lemougna PN, Dilissen N, Hernandez GM, Kingne F, Gu J, Rahier H. Effect of sodium disilicate and metasilicate on the microstructure and mechanical properties of one-part alkali-activated copper slag/ground granulated blast furnace slag. Materials. 2021;14(19):5505.
  • 13. Bernal SA, Nicolas RS, van Deventer JS, Provis JL. Alkali-acti- vated slag cements produced with a blended sodium carbonate/ sodium silicate activator. Adv Cem Res. 2016;28(4):262–73.
  • 14. McLellan BC, Williams RP, Lay J, Van Riessen A, Corder GD. Costs and carbon emissions for geopolymer pastes in comparison to ordinary portland cement. J Clean Prod. 2011;19(9–10):1080–90.
  • 15. Van Deventer JSJ, Provis JL, Duxson P. Technical and commer- cial progress in the adoption of geopolymer cement. Miner Eng. 2012;29:89–104.
  • 16. Nath SK, Kumar S. Influence of iron making slags on strength and microstructure of fly ash geopolymer. Constr Build Mater. 2013;38:924–30.
  • 17. Sun J, Zhang Z, Zhuang S, He W. Hydration properties and micro- structure characteristics of alkali–activated steel slag. Constr Build Mater. 2020;241: 118141.
  • 18. Zhang J, Li S, Li Z. Investigation the synergistic effects in quaternary binder containing red mud, blast furnace slag, steel slag and flue gas desulfurization gypsum based on artificial neural networks. J Clean Prod. 2020;273: 122972.
  • 19. Wang Q, Cui X, Wang J, Li S, Lv C, Dong Y. Effect of fly ash on rheological properties of graphene oxide cement paste. Constr Build Mater. 2017;138:35–44.
  • 20. Yao X, Wang W, Liu M, Yao Y, Wu S. Synergistic use of indus- trial solid waste mixtures to prepare ready-to-use lightweight porous concrete. J Clean Prod. 2019;211:1034–43.
  • 21. Zhou Y, Sun J, Liao Y. Influence of ground granulated blast furnace slag on the early hydration and microstructure of alkaliactivated converter steel slag binder. J Therm Anal Calorim. 2022;147:243–52.
  • 22. Saha S, Rajasekaran C. Enhancement of the properties of fly ash based geopolymer paste by incorporating ground granulated blast furnace slag. Constr Build Mater. 2017;146:615–20.
  • 23. Allahverdi A, Akhondi M, Mahinroosta M. Superior sodium sul- fate resistance of a chemically activated phosphorus slag–based composite cement. J Mater Civil Eng. 2017;29(3):04016231.
  • 24. Liu H, Ma L, Huang X, Yang J, Tang J, Yang J, Jiang M. Phase transformation of glass-ceramics produced by naturally cooled yellow phosphorus slag during calcination. J Alloy Compd. 2017;712:510–6.
  • 25. Xie F, Liu Z, Zhang D, Wang J, Wang D, Ni J. The effect of NaOH content on rheological properties, microstructures and interfacial characteristic of alkali activated phosphorus slag fresh pastes. Constr Build Mater. 2020;252: 119132.
  • 26. Peng Y, Zhang J, Liu J, Ke J, Wang F. Properties and microstructure of reactive powder concrete having a high content of phosphorous slag powder and silica fume. Constr Build Mater. 2015;101:482–7.
  • 27. Chen X, Zeng L, Fang KH. Anti-crack performance of phosphorus slag concrete. Wuhan Univ J Nat Sci. 2009;14(1):80–6.
  • 28. Dong-xu L, Lin C, Zhong-zi X, Zhi-min L. A blended cement containing blast furnace slag and phosphorous slag. J Wuhan Univ Technol Mater Sci Ed. 2002;17(2):62–5.
  • 29. Shi C, Li Y. Investigation on some factors affffecting the characteristics of alkaliphosphorus slag. Cem Concr Res. 1989;19(4):527–33.
  • 30. GB/T 17671–1999 (1999) Method of testing cements – determina- tion of strength.
  • 31. GB/T 2419–2005 (2005) Test method for fluidity of cement mortar.
  • 32. GB/T 1346–2011 (2011) Test methods for water requirement of normal consistency, setting time and soundness of Portland cement.
  • 33. GB 175–2007 (2007) Common Portland Cement.
  • 34. Lee WKW, Van Deventer JSJ. The effect of ionic contaminants on the early-age properties of alkali-activated fly ash-based cements. Cem Concr Res. 2002;32(4):577–84.
  • 35. Shah SFA, Chen B, Oderji SY, Haque MA, Ahmad MR. Improvement of early strength of fly ash-slag based one-part alkali activated mortar. Constr Build Mater. 2020;246: 118533.
  • 36. Pacewska B, Wilińska I. Usage of supplementary cementitious materials: advantages and limitations. J Therm Anal Calorim. 2020;142(1):371–93.
  • 37. Bernal SA, Provis JL, Rose V, De Gutierrez RM. Evolution of binder structure in sodium silicate-activated slag-metakaolin blends. Cem Concr Compos. 2011;33(1):46–54.
  • 38. Sun Z, Vollpracht A. Isothermal calorimetry and in-situ XRD study of the NaOH activated fly ash, metakaolin and slag. Cem Concr Res. 2018;103:110–22.
  • 39. Xie F, Liu Z, Zhang D, Wang J, Wang D. Understanding the acting mechanism of NaOH adjusting the transformation of viscoelastic properties of alkali activated phosphorus slag. Constr Build Mater. 2020;257: 119488.
  • 40. John L, Provis, S.J. Jannie, van Deventer (2013) Alkali Activated Materials: state-of-the-art report, RILEM TC 224-AAM (Vol. 13). Springer Science & Business Media.
  • 41. Haha MB, Le Saout G, Winnefeld F, Lothenbach B. Influence of activator type on hydration kinetics, hydrate assemblage and microstructural development of alkali activated blast-furnace slags. Cem Concr Res. 2011;41(3):301–10.
  • 42. Walkley B, San Nicolas R, Sani MA, Rees GJ, Hanna JV, van Deventer JS, Provis JL. Phase evolution of C-(N)-ASH/NASH gel blends investigated via alkali-activation of synthetic calcium aluminosilicate precursors. Cem Concr Res. 2016;89:120–35.
  • 43. Xia M, Muhammad F, Zeng L, Li S, Huang X, Jiao B, Li D. Solidi fi cation/stabilization of leadzinc smelting slag in composite based geopolymer. J Clean Prod. 2019;209:1206–15.
  • 44. Li J, Yu Q, Wei J, Zhang T. Structural characteristics and hydration kinetics of modified steel slag. Cem Concr Res. 2011;41(3):324–9.
  • 45. Liu Z, Zhang DW, Li LI, Wang JX, Shao NN, Wang DM. Micro- structure and phase evolution of alkali-activated steel slag during early age. Constr Build Mater. 2019;204:158–65.
  • 46. Dakhane A, Madavarapu SB, Marzke R, Neithalath N. Time, temperature, and cationic dependence of alkali activation of slag: insights from fourier transform infrared spectroscopy and spectral deconvolution. Appl Spectrosc. 2017;71(8):1795–807.
  • 47. Tong KT, Vinai R, Soutsos MN. Use of Vietnamese rice husk ash for the production of sodium silicate as the activator for alkali- activated binders. J Clean Prod. 2018;201:272–86.
  • 48. Villain G, Thiery M, Platret G. Measurement methods of carbona- tion profiles in concrete: thermogravimetry, chemical analysis and gammadensimetry. Cem Concr Res. 2007;37(8):1182–92.
  • 49. Rodriguez ET, Garbev K, Merz D, Black L, Richardson IG. Ther- mal stability of CSH phases and applicability of Richardson and Groves’ and Richardson C-(A)-SH (I) models to synthetic CSH. Cem Concr Res. 2017;93:45–56.
  • 50. Lee NK, Koh KT, An GH, Ryu GS. Influence of binder compo- sition on the gel structure in alkali activated fly ash/slag pastes exposed to elevated temperatures. Ceram Int. 2017;43(2):2471–80.
  • 51. Myers RJ, Bernal SA, San Nicolas R, Provis JL. Generalized structural description of calcium–sodium aluminosilicate hydrate gels: the cross-linked substituted tobermorite model. Langmuir. 2013;29(17):5294–306.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3fbb0e88-a71f-4bdb-a36f-068269b584c8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.