PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Innovative Method of Forecasting the Generator Gas Composition after the Process of Pyrolysis and Gasification

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article presents a new approach to forecasting producer gas composition. Thermochemical treatment of biomass was presented as an effective method of producing flammable gas. The methods of predicting the gas composition of the generator are described, and then its efficiency depends on the device’s parameters. In order to create a method for forecasting gas composition, the authors’ works were used as the basis on which the energy characteristics of the gases obtained were assessed. It was assumed in this paper that it is essential to understand the influence of each parameter on the energy characteristics of the gas. It made it possible to optimize the composition and predict thermal characteristics. This article presents the results of experimental studies on biomass gasification and a mathematical model based on Gibbs free energy.
Rocznik
Tom
Strony
97--109
Opis fizyczny
Bibliogr. 28 poz., rys., tab.
Twórcy
  • Kielce University of Technology, Poland
Bibliografia
  • Ahmadi, M., Elm Svensson, E., Engvall, K. (2013). Application of solid-phase microextraction (SPME) as a tar sampling method. Energy & fuels, 27(7), 3853-3860.
  • Azzone, E., Morini, M., Pinelli, M. (2012). Development of an equilibrium model for the simulation of thermochemical gasification and application to agricultural residues. Renewable energy, 46, 248-254.
  • Babler, M.U., Phounglamcheik, A., Amovic, M., Ljunggren, R., Engvall, K. (2017). Modeling and pilot plant runs of slow biomass pyrolysis in a rotary kiln. Applied energy, 207, 123-133.
  • Barman, N.S., Ghosh, S., De, S. (2012). Gasification of biomass in a fixed bed downdraft gasifier – A realistic model including tar. Bioresource technology, 107, 505-511.
  • Dahlquist, E., Mirmoshtaghi, G., Larsson, E.K., Thorin, E., Yan, J., Engvall, K., ... Lu, Q. (2013, September). Modelling and simulation of biomass conversion processes. In 2013 8th EUROSIM Congress on Modelling and Simulation, 506-512. IEEE.
  • FakhrHoseini, S.M., Dastanian, M. (2013). Predicting pyrolysis products of PE, PP, and PET using NRTL activity coefficient model. Journal of Chemistry, 2013.
  • Jarungthammachote, S., Dutta, A. (2008). Equilibrium modeling of gasification: Gibbs free energy minimization approach and its application to spouted bed and spout-fluid bed gasifiers. Energy Conversion and Management, 49(6), 1345-1356.
  • Koshlak, H., Pavlenko, A. (2020). Mathematical Model of Particle Free Settling in a Vortex Apparatus. Rocznik Ochrona Środowiska, 22.
  • Koukkari, P., Pajarre, R. (2011). A Gibbs energy minimization method for constrained and partial equilibria. Pure and Applied Chemistry, 83(6), 1243-1254.
  • Lee, D.H., Yang, H., Yan, R., Liang, D.T. (2007). Prediction of gaseous products from biomass pyrolysis through combined kinetic and thermodynamic simulations. Fuel, 86(3), 410-417.
  • Liliedahl, T., Sjöström, K., Engvall, K., Rosén, C. (2011). Defluidisation of fluidised beds during gasification of biomass. Biomass and bioenergy, 35, S63-S70.
  • Melgar, A., Pérez, J.F., Laget, H., Horillo, A. (2007). Thermochemical equilibrium modelling of a gasifying process. Energy conversion and management, 48(1), 59-67.
  • Melgar, A., Pérez, J.F., Laget, H., Horillo, A. (2007). Thermochemical equilibrium modelling of a gasifying process. Energy conversion and management, 48(1), 59-67.
  • Nemanova, V., Engvall, K. (2014). Tar variability in the producer gas in a bubbling fluidized bed gasification system. Energy & fuels, 28(12), 7494-7500.
  • Nemanova, V., Abedini, A., Liliedahl, T., Engvall, K. (2014). Co-gasification of petroleum coke and biomass. Fuel, 117, 870-875.
  • Nemanova, V., Nordgreen, T., Engvall, K., Sjöström, K. (2011). Biomass gasification in an atmospheric fluidised bed: Tar reduction with experimental iron-based granules from Höganäs AB, Sweden. Catalysis Today, 176(1), 253-257.
  • Pavlenko, A.M., Koshlak, H. (2021). Application of Thermal and Cavitation Effects for Heat and Mass Transfer Process Intensification in Multicomponent Liquid Media. Energies, 14(23), 7996. https://doi.org/10.3390/en14237996
  • Pavlenko, A.M., Koshlak, H. (2021). Intensification of Gas Hydrate Formation Processes by Renewal of Interfacial Area between Phases. Energies, 14(18), 5912.
  • Pavlenko, A.M., Koshlak, H.V., Usenko, B.O. (2014). Heat and mass transfer in fluidized layer. Metallurgical and Mining Industry, 6(6), 96-100.
  • Pavlenko, A., Klas, E. (2020). Hydrocarbon Synthesis During Methane Pyrolysis. Rocznik Ochrona Środowiska, 22.
  • Pavlenko, A., Koshlak, H. (2019). Heat and mass transfer during phase transitions in liquid mixtures. Rocznik Ochrona Środowiska, 21.
  • Pepiot, P., Dibble, C.J., Foust, T.D. (2010). Computational fluid dynamics modeling of biomass gasification and pyrolysis. In Computational modeling in lignocellulosic biofuel production, 273-298. American Chemical Society.
  • Puig-Arnavat, M., Bruno, J.C., Coronas, A. (2012). Modified thermodynamic equilibrium model for biomass gasification: a study of the influence of operating conditions. Energy & Fuels, 26(2), 1385-1394.
  • Samuelsson, L.N., Moriana, R., Babler, M.U., Ek, M., Engvall, K. (2015). Model-free rate expression for thermal decomposition processes: the case of microcrystalline cellulose pyrolysis. Fuel, 143, 438-447.
  • Sieradzka, M., Rajca, P., Zajemska, M., Mlonka-Mędrala, A., Magdziarz, A. (2020). Prediction of gaseous products from refuse derived fuel pyrolysis using chemical modelling software-Ansys Chemkin-Pro. Journal of Cleaner Production, 248, 119277.
  • Silva, I.P., Lima, R.M., Silva, G.F., Ruzene, D.S., Silva, D.P. (2019). Thermodynamic equilibrium model based on stoichiometric method for biomass gasification: A review of model modifications. Renewable and Sustainable Energy Reviews, 114, 109305.
  • Wan, W., Engvall, K., Yang, W. (2018). Novel model for the release and condensation of inorganics for a pressurized fluidized-bed gasification process: effects of gasification temperature. ACS omega, 3(6), 6321-6329.
  • Zevenhoven-Onderwater, M., Backman, R., Skrifvars, B.J., Hupa, M. (2001). The ash chemistry in fluidised bed gasification of biomass fuels. Part I: predicting the chemistry of melting ashes and ash-bed material interaction. Fuel, 80(10), 1489-1502.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3fba94be-d96a-41b6-9aa3-db9a1bc53d52
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.