Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Research related to photovoltaic panels comprises different topics starting with modelling solar cells, finding new maximum power point tracking (MPPT) algorithms, testing existing ones or designing of DC/DC converters for MPPT systems and microgrids that incorporate photovoltaic energy sources. In each of the examples above a deep knowledge of photovoltaic panels is required, as well as a reliable measurement system that can deliver continuous, stable light with enough power to meet standard test conditions (STC) and that can ensure repeatable results. Therefore this paper presents a low-cost solar simulator with a microcontroller-based measurement system, that can be used for various measurements of low-power photovoltaic panels.
Czasopismo
Rocznik
Tom
Strony
685--700
Opis fizyczny
Bibliogr. 26 poz., rys., tab., wykr., wzory
Twórcy
autor
- Koszalin University of Technology, Department of Electronics and Computer Science, Faculty of Electronics, 2 Śniadeckich St., 75-453 Koszalin, Poland
autor
- Koszalin University of Technology, Department of Electronics and Computer Science, Faculty of Electronics, 2 Śniadeckich St., 75-453 Koszalin, Poland
autor
- Koszalin University of Technology, Department of Electronics and Computer Science, Faculty of Electronics, 2 Śniadeckich St., 75-453 Koszalin, Poland
autor
- Koszalin University of Technology, Department of Energy, Faculty of Mechanical Engineering, 15-17 Racławicka St., 75-620 Koszalin, Poland
Bibliografia
- [1] Górecki, K., Dąbrowski, J., & Krac, E. (2021). Modeling Solar Cells Operating at Waste Light. Energies, 14(10), 2871. https://doi.org/10.3390/en14102871
- [2] Karami, N., Moubayed, N., & Outbib, R. (2017). General review and classification of different MPPT Techniques. Renewable and Sustainable Energy Reviews, 68(1), 1-18. https://doi.org/10.1016/j.rser.2016.09.132
- [3] Banu, I.V., Beniugă, R., & Istrate, M. (2017, October 18). Comparative Analysis of the Perturband-Observe and Incremental Conductance MPPT Methods. 2013 8th International Symposium on Advanced Topics in Electrical Engineering (ATEE). https://doi.org/10.1109/ATEE.2013.6563483
- [4] Mostafa, H. H., Ibrahim, A. M., & Anis W. R. (2019). A performance analysis of a hybrid golden section search methodology and a nature-inspired algorithm for MPPT in a solar PV system. Archives of Electrical Engineering, 68(3), 611-627. https://doi.org/10.24425/aee.2019.129345
- [5] Mroczka, J., & Ostrowski, M. (2014). A Hybrid Maximum Power Point Search Method Using Temperature Measurements in Partial Shading Conditions. Metrology and Measurement Systems, 21(4), 733-740. https://doi.org/10.2478/mms-2014-0056
- [6] Akram, N., Khan, L., Agha, S., & Hafeez, K. (2022). Global Maximum Power Point Tracking of Partially Shaded PV System Using Advanced Optimization Techniques. Energies, 15(11), 4055. https://doi.org/10.3390/en15114055
- [7] Chavan, V. C., Mikkili, S., & Senjyu, T. (2022). Hardware Implementation of Novel Shade Dispersion PV Reconfiguration Technique to Enhance Maximum Power under Partial Shading Conditions. Energies, 15(10), 3515. https://doi.org/10.3390/en15103515
- [8] Khan, M. J., Kumar, D., Narayan, Y., Malik, H., García Márquez, F. P., & Gómez Muñoz, C. Q. (2022). A Novel Artificial Intelligence Maximum Power Point Tracking Technique for Integrated PV-WT-FC Frameworks. Energies, 15(9), 3352. https://doi.org/10.3390/en15093352
- [9] Xiao, W., Ozog, N. & Dunford, W.G. (2007). Topology Study of Photovoltaic Interface for Maximum Power Point Tracking. IEEE Transactions on Industrial Electronics, 54(3), 1696-1704. https://doi.org/10.1109/TIE.2007.894732
- [10] Padhee, S., Pati, U. C., & Mahapatra, K. (2016, August). Design of photovoltaic MPPT based charger for lead-acid batteries. 2016 IEEE International Conference on Emerging Technologies and Innovative Business Practices for the Transformation of Societies (EmergiTech), (pp. 351-356). https://doi.org/10.1109/EmergiTech.2016.7737365
- [11] Qin L., Xie, S., Yang C., & Cao J. (2013, June). Dynamic model and dynamic characteristics of solar cell. 2013 IEEE ECCE Asia Downunder, (pp. 659-663). https://doi.org/10.1109/ECCE-Asia.2013.6579170
- [12] Tanesab, J., Ali, M., Parera, G., Mauta, J., Sinaga, R. (2019, October). A Modified Halogen Solar Simulator. ICESC 2019, (pp. 18-19). http://dx.doi.org/10.4108/eai.18-10-2019.2289851
- [13] Al Mansur A., Islam, M. I., ul Haq, M. A., Maruf, M. H., Shihavuddin, A., & Amin, M. R. (2020, December). Investigation of PV Modules Electrical Characteristics for Laboratory Experiments using Halogen Solar Simulator. 2020 2nd International Conference on Sustainable Technologies for Industry 4.0 (STI). https://doi.org/10.1109/STI50764.2020.9350496
- [14] Wajs, J., Golabek, A., & Bochniak, R. (2019). Photovoltaic Roof Tiles: The Influence of Heat Recovery on Overall Performance. Energies, 12(21), 4097. https://doi.org/10.3390/en12214097
- [15] Wajs, J., Golabek, A., Bochniak, R., & Mikielewicz, D. (2020). Air-cooled photovoltaic roof tile as an example of the BIPVT system - An experimental study on the energy and exergy performance. Energy, 197, 117255. https://doi.org/10.1016/j.energy.2020.117255
- [16] Sarniak, M. T. (2021). The Efficiency of Obtaining Electricity and Heat from the Photovoltaic Module under Different Irradiance Conditions. Energies, 14, 8271. https://doi.org/10.3390/en14248271
- [17] Kalogirou, S. A., & Tripanagnostopoulos, Y. (2006). Hybrid PV/T solar systems for domestic hot water and electricity production. Energy Conversion and Management 47(24), 3368-3382. https://doi.org/10.1016/j.enconman.2006.01.012
- [18] Moharram, K. A., Abd-Elhady, M. S., Kandil, H. A., & El-Sherif, H. (2013). Enhancing the performance of photovoltaic panels by water cooling. Ain Shams Engineering Journal, 4(4), 869-877. https://doi.org/10.1016/j.asej.2013.03.005
- [19] Grandi, G., Ienina A., & Bardhi, M. (2014). Effective low-cost hybrid LED-halogen solar simulator. IEEE Transactions on Industry Applications, 50(5), 3055-3064. https://doi.org/10.1109/TIA.2014.2330003
- [20] Namin, A., Jivacate, C., Chenvidhya, D., Kirtikara, K., & Thongpron, J. (2012). Construction of Tungsten Halogen, Pulsed LED, and Combined Tungsten Halogen-LED Solar Simulators for Solar Cell-Characterization and Electrical Parameters Determination. International Journal of Photoenergy, 2012. https://doi.org/10.1155/2012/527820
- [21] Dafalla, Y., & Osman, M. (2016, October). A solar simulator for the Renewable Energy instruction laboratory. 2016 IEEE Conference on Technologies for Sustainability (SusTech), (pp. 235-239). https://doi.org/10.1109/SusTech.2016.7897173
- [22] Esen, V., Sağlam, Ş., & Oral, B. (2017). Light sources of solar simulators for photovoltaic devices: A review. Renewable and Sustainable Energy Reviews, 77, 1240-1250. https://doi.org/10.1016/j.rser.2017.03.062
- [23] Walczak, M., & Bychto, L. (2021). Influence of Parasitic Resistances on the Input Resistance of Buck and Boost Converters in Maximum Power Point Tracking (MPPT) Systems. Electronics, 10(12), 1464. https://doi.org/10.3390/electronics10121464
- [24] Yilmaza, U., Turksoyb, O., & Tekec, A. (2019). Improved MPPT method to increase accuracy and speed in photovoltaic systems under variable atmospheric conditions. International Journal of Electrical Power and Energy Systems, 113, 634-651. https://doi.org/10.1016/j.ijepes.2019.05.074
- [25] Janke, W., Bączek, M., Kraśniewski, J., & Walczak, M. (2022). Input Small-Signal Characteristics of Selected DC-DC Switching Converters. Energies, 15, 1924. https://doi.org/10.3390/en15051924
- [26] Hayat, A., Faisal, A., Javed, M. Y., Hasseb, M., & Rana, R. A. (2016, April). Effects of Input Capacitor (Cin) of Boost Converter for Photovoltaic System. 2016 International Conference on Computing, Electronic and Electrical Engineering (ICE Cube), Quetta, (pp. 68-73). https://doi.org/10.1109/ICECUBE.2016.7495257
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3fba36c0-ae4a-403c-bbe3-4e187f6422d5