PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Producibility of the ion-exchange method in manufacturing gradient refractive index in glass

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents the technological aspect of application of the ion exchange method in producing gradient refractive index in glass. The possibility of predictable and repeatable producing of the changes in glass refraction with the use of this method has been presented, as well as the method of in situ control of the process of diffusion doping of glass based on the measurement of the temperature. This method is based on simultaneous (to the carried process) solving the nonlinear diffusion equation modeling the spatio-temporal changes in normalized concentration of the admixture ions in glass. For this purpose the knowledge of temperature characteristics of diffusion coefficients of exchanged ions is used. The result of such control of diffusion processes is information on the current (temporary) refractive index profile of the resulting waveguide. The presented method of control has been confirmed by experimental results, which concern modeling and measurements of planar waveguide structures of slab type. The proposed methodology can also be used to control the diffusion processes of producing another type of two- and three-dimensional gradient structures. According to the author’s knowledge the method mentioned above has not been described in literature before.
Rocznik
Strony
655--665
Opis fizyczny
Bibliogr. 81, wykr., tab., rys.
Twórcy
  • Faculty of Electrical Engineering, Silesian University of Technology, 2 Krzywoustego St., 44-100 Gliwice, Poland
Bibliografia
  • [1] T. Izawa and H. Nakagone, “Optical waveguide formed by electrically induced migration of ions in glass plates”, Applied Physics Letters 21, 584-586 (1972).
  • [2] W.H. Zachariasen, “The atomic arrangement in glass”, J. American Chemistry Society 54, 3841-3851 (1932).
  • [3] H. Kahnt, “Ionic transport in glasses”, J. Non-Crystalline Solids 203, 225-231 (1996).
  • [4] J.G. Gallagher and R.M.de La Rue, “Single-mode stripe optical waveguides formed by silver ion exchange”, Electronics Letters 12 (16), 397-398 (1976).
  • [5] G. Stewart, C.A. Millar, P.J.R. Laybourn, and C.D.W. Wilkinson, “Planar optical waveguides formed by silver ion migration in glass”, IEEE J. Quantum Electron. 13 (4), 192-200 (1977).
  • [6] G. Stewart and P.J.R. Laybourn, “Fabrication of ion-exchanged optical waveguides from dilute silver nitrate melts”, IEEE J.Quantum Electronics 14 (12), 930-934 (1978).
  • [7] K. Forrest, S.J. Pagano, and W. Viehman, “Channel waveguides in glass via silver-sodium field-assisted ion exchange”, J. Lightwave Technology 4 (2), 140-150 (1986).
  • [8] R.K.Lagu and R.V Ramaswamy, “Silver ion-exchanged, buried, glass optical waveguides with symmetric index profile”, Applied Physics Letters 48 (1), 19-20 (1986).
  • [9] P. Chludzinski, R.V. Ramaswamy, and T.J. Anderson, “Silversodium ion-exchange in soda-lime silicate glass”, Phys. Chem. Glasses 28, 169-173 (1987).
  • [10] R.V. Ramaswamy, R. Srivastava, P. Chludzinski, and T.J. Anderson, “Influence of Ag+-Na+ ion exchange equilibrium on waveguide index profiles”, IEEE J. Quantum Electronics 24 (5), 780-786 (1988).
  • [11] R.V. Ramaswamy and R. Srivastava, “Ion-exchange glass waveguides: a review”, J. Lightwave Technology 6 (6), 984-1002 (1988).
  • [12] R. Rogoziński, “Electrodiffusion processes with the conversion of polarization direction of electric field in the formation of planar waveguide structures using ion exchange technique in glass”, Optica Applicata 28 (4), 331-343 (1998).
  • [13] R. Rogoziński, “Refractive index profiles of planar waveguides produced in electrodiffusion processes”, Optica Applicata 34 (4), 489-505 (2004).
  • [14] S. Urnes, “Na+-K+ exchange in silicate glasses”, J. American Ceramics Society 56 (10), 514-517 (1973).
  • [15] J.E. Gortych and D.G. Hall, “Fabrication of planar optical waveguides by K+-ion exchange in BK7 and pyrex glass”, IEEE J. Quantum Electronics 22, 892-895 (1986).
  • [16] J. Albert and G.L. Yip, “Stress-induced index change for K+- Na+ ion exchange in glass”, Electronics Letters 23 (14), 737-738 (1987).
  • [17] A. Miliou, H. Zhenguang, H.C. Cheng, R. Shirastava, and R.V. Ramaswamy, “Fiber-compatible K+-Na+ ion-exchanged channel waveguides: fabrication and characterization”, IEEE J. Quantum Electronics 25 (8), 1889-1897 (1989).
  • [18] P.C. Noutsios and G.L. Yip, “Shallow buried waveguides made by purely thermal migration of K+ ions in glass”, Optics Letters 15 (4), 212-214 (1990).
  • [19] M.G. Galechyan, S.M. Loktev, N.M. Lyndin, and A.V. Tishchenko, “Pulse electric-field-assisted diffusion of K+ ions in glass”, Sov. Lightwave Commun. 1, 293-300 (1991).
  • [20] I.S. Mauchline and G. Stewart, “Fabrication of buried channel waveguides in K+-Na+ ion-exchanged glass and their application to notch filters”, Optics Letters 18 (21), 1801-1803 (1993).
  • [21] E. Giorgetti, D. Grando, L. Palchetti, and S. Sottini, “Thermal annealing of K+-Na+ion-exchanged waveguides”, Optics Letters 20 (12), 1374-1376 (1995).
  • [22] J. Kosiková and J. Schröfel, “Integrated waveguide structures prepared in very pure glass by electric field assisted K+- Na+ ion exchange”, Optics Communications 156, 384-391 (1998).
  • [23] R. Rogoziński, “Investigation of birefringence in planar waveguides produced by ion exchange K+ $Na+ in glass BK-7”, Proc. SPIE-Int. Soc. Opt. Eng. 5576, 213-218 (2003).
  • [24] L. Ross, H.J. Lilienhof, and H.W. Hoelscher, “Buried waveguides for passive integrated optics by Cs+ ionexchange”, Proc. SPIE-Int. Soc. Opt. Eng. 651, 32-34 (1986).
  • [25] A. Reichelt, P.C. Clemens, and H.F. Mthlein, “Singlemode waveguides and components by two-step Cs+-K+ ionexchange in glass”, Proc. SPIE-Int. Soc. Opt. Eng.: “Glasses for Optoelectronics” 1126, 166-168 (1989).
  • [26] L.D. Bogomolova, V.V. Ganshin, V.A. Jachkin, M.E. Kubrinskaya, and V.Z. Petrova, “EPR and optical study of copper diffusion layers produced by ion exchange in oxide glasses”, J. Non-Crystalline Solids 45, 249-255 (1981).
  • [27] S.S.Gevorgyan, “Single-step buried waveguides in glass by field-assisted copper ion-exchange”, Electronics Letters 26 (1), 38-39 (1990).
  • [28] F.Gonella, “Characterization of Cu-Na ion-exchanged glass waveguides”, Applied Physics Letters 69 (3), 314-315 (1996).
  • [29] T. Findakly, “Glass waveguides by ion exchange: a review”, Optical Engineering 24 (2), 244-250 (1985).
  • [30] A. Beguin, T. Dumas, M.J. Hackert, R. Jansen, and C. Nissim, “Fabrication and performance of low loss optical components made by ion exchange in glass”, J. Lightwave Technol. 6 (10), 1483-1487 (1988).
  • [31] G.H. Chartier, P. Jaussaud, A.D. de Oliveira, and O. Parriaux, “Fast fabrication method for thick and highly multimode optical waveguides”, Electronics Letters 13, 763-764 (1977).
  • [32] A.A. Appen, Chimija Stiekła, Leningrad, 1970.
  • [33] M.L. Huggins, “The refractive index of silicate glasses as a function of composition”, J. Optical Society of America 30 (10), 495-504 (1940).
  • [34] S.D. Fantone, “Refractive index and spectral models for gradient-index materials”, Applied Optics 22, 432-440 (1983).
  • [35] G.H. Chartier, J.L. Coutaz, A. Girod, P. Jaussaud, and O. Parriaux, “Optical waveguides made by ion exchange in glass. Application to two dimension integrated optical devices”, J. Non-Crystalline Solids 47 (2), 259-262 (1982).
  • [36] T.J. Cullen and C.D.W. Wilkinson, “Radiation losses from singlemode optical Y junctions formed by silver-ion exchange in glass”, Opt. Lett. 10 (4), 134-136 (1984).
  • [37] T. Findakly and B. Chen, “Single-mode integrated optical 1 X N star coupler”, Appl. Phys. Lett. 40 (7), 549-550 (1982).
  • [38] A. Tervonen, S. Honkanen, and S.I. Najafi, “Analysis of symmetric directional couplers and asymmetric Mach-Zehnder interferometers as 1.30/1.55 μm dual wavelength demultiplexers/ multiplexers”, Opt. Eng. 32 (9), 2083-2091 (1993).
  • [39] B. Buchold, C. Glingener, D. Culemann, and E. Voges, “Polarization Insensitive Ion-Exchanged Arrayed-Waveguide Grating Multiplexers in Glass”, Fiber Integr Optics 17 (4), 279-298 (1998).
  • [40] S. Ruschin, G. Hurwitz, T. Hurwitz, A. Kepten, E. Arad, Y. Soreq, and S. Eckhouse, “Glass ion-exchange technology for wavelength management applications”, Proc. SPIE 4944, 150-158 (2003).
  • [41] J.M. Castro, D.F. Geraghty, B.R.West, and S. Honkanen, “Fabrication and comprehensive modeling of ion-exchanged bragg optical add-drop multiplexers”, Appl. Opt. 43 (33), 6166-6173 (2004).
  • [42] D. Bucci, J. Grelin, E. Ghibaudo, and J.-E. Broquin, “Realization of a 980-nm/1550-nm pump-signal (de)multiplexer made by ion-exchange in glass using a segmented asymmetric Y-Junction”, IEEE Photonics Technol. Lett. 19 (9), 698-700 (2007).
  • [43] G.L. Yip and J. Finak, “Directional-coupler power divider by two-step K+-ion exchange”, Opt. Lett. 9 (9), 423-425 (1984).
  • [44] R.G. Walker and C.D.W. Wilkinson, “Integrated optical ring resonators made by silver ion-exchange in glass”, Appl. Opt. 22 (7), 1029-1035 (1983).
  • [45] H.-K. Hsiao and K.A. Winick, “Planar glasswaveguide ring resonators with gain”, Opt. Express 15 (26), 17783-17797 (2007).
  • [46] V. Hinkov and W. Sohler, “Reduced depth polarizer for integrated optics”, Appl. Phys. 14, 229-230 (1977).
  • [47] P. Benech, D. Persegol, and F. Saint Andre, “A glass ion exchanged Mach-Zehnder interferometer to stabilize the frequency of a laser diode”, J. Phys. D 23 (5), 617-619 (1990).
  • [48] A. Tervonen, P. P¨oyh¨onen, S. Honkanen, and M. Tahkokorpi, “A guided-wave Mach-Zehnder interferometer structure for wavelength multiplexing”, IEEE Photonics Technol. Lett. 3 (6), 516-518 (1991).
  • [49] S. Das, D. Geraghty, S. Honkanen, and N. Peyghambarian, “MMI splitters by ion-exchange in glass”, Proc. SPIE 3936, 239-247 (2000).
  • [50] M. Błahut, P. Karasiński, and R. Rogoziński, “Multimode interference structures made by ion-exchange technique in glass”, Proc. SPIE 5028, 85-89 (2003).
  • [51] B. West and S. Honkanen, “MMI devices with weak guiding designed in three dimensions using a genetic algorithm”, Opt. Express 12 (12), 2716-2722 (2004).
  • [52] J. Viljanen and M. Leppihalme, “Fabrication of optical strip waveguides with nearly circular cross section by silver ion migration technique”, J. Appl. Phys. 51 (7), 3563-3565 (1980).
  • [53] A. Tervonen, P. Poyhonen, S. Honkanen, M. Tahkokorpi, and S. Tammela, “Examination of two-step fabrication methods for single-mode fiber compatible ion-exchanged waveguides”, Appl. Opt. 30 (3), 338-343 (1991).
  • [54] S.I. Najafi, W.-J. Wang, J.F. Currie, R. Leonelli, and J.L. Brebner, “Fabrication and characterization of neodymium-doped glass waveguides”, IEEE Photonics Technol. Lett. 1 (5), 109-110 (1989).
  • [55] T. Feuchter, E.K. Mwarania, J. Wang, L. Reekie, and J.S. Wilkinson, “Erbium-doped ion-exchanged waveguide lasers in BK-7 glass”, IEEE Photon. Technol. Lett. 4 (6), 542-544 (1992).
  • [56] F.D. Patel, S. Di Carolis, P. Lum, S. Venkatesh, and J.N.Miller, “A compact high-performance optical waveguide amplifier”, IEEE Photon. Technol. Lett. 16 (12), 2607-2609 (2004).
  • [57] S. Pissadakis, A. Ikiades, P. Hua, A.K. Sheridan, and J.S. Wilkinson, “Photosensitivity of ion-exchanged Er-doped phosphate glass using 248 nm excimer laser radiation”, Opt. Express 12 (14), 3131-3136 (2004).
  • [58] S. Yliniemi, S. Honkanen, A. Ianoul, A. Laronche, and J. Albert, “Photosensitivity and volume gratings in phosphate glasses for rareearth-doped ion-exchanged optical waveguide lasers”, J. Opt. Soc. Am. B 23 (12), 2470-2478 (2006).
  • [59] D. Dorosz, J. Dorosz, A. Zając, J. Żmojda, and M. Kochanowicz, “Active optical fibres for application in laser and broadband ASE sources”, Bull. Pol. Ac.: Tech. 60 (4), 673-682 (2012).
  • [60] J. Żmojda, D. Dorosz, M. Kochanowicz, and J. Dorosz, “Active glasses as the luminescent sources of radiation for sensor applications”, Bull. Pol. Ac.: Tech. 62 (2), 393-397 (2014).
  • [61] L. Ross, “Ion-exchanged glass waveguide sensors”, SPIE Critical Reviews of Optical Science and Technology CR53, 180-199 (1994).
  • [62] O.M. Parriaux, P. Roth, and G. Voirin, “Multimode glass integrated optics”, SPIE Critical Reviews of Optical Science and Technology CR53, 295-320 (1994).
  • [63] A. Yimit, A.G. Rossberg, T. Amemiya, and K. Itoh, “Thin film composite optical waveguides for sensor applications: a review”, Talanta 5 (5), 1102-1109 (2005).
  • [64] P.V. Lambeck, “Integrated optical sensors for the chemical domain”, Meas. Sci. Technol. 17 (8), R93-R116 (2006).
  • [65] R. Mazurczyk, J. Vieillard, A. Bouchard, B. Hannes, and S. Krawczyk, “A novel concept of the integrated fluorescence detection system and its application in a lab-on-a-chip microdevice”, Sens. Actuators B 118 (1-2), 11-19 (2006).
  • [66] T.J. Cullen, C.N. Ironside, C.T. Seaton, and G.I. Stegeman, “Semiconductor-doped glass ion-exchanged waveguides”, Appl. Phys. Lett. 49 (21), 1403-1405 (1986).
  • [67] A. Gabel, K.W. DeLong, C.T. Seaton, and G.I. Stegeman, “Efficient degenerate four-wave mixing in an ion-exchanged semiconductor-doped glass waveguide”, Appl. Phys. Lett. 51 (21), 1682-1684 (1987).
  • [68] J.M. Auxier, S. Honkanen, A. Sch¨ulzgen, M.M. Morrell, M.A. Leigh, S. Sen, N.F. Borrelli, and N. Peyghambarian, “Silver and potassium ion-exchanged waveguides in glasses doped with PbS semiconductor quantum dots”, J. Opt. Soc. Am. B 23, 1037-1045 (2006).
  • [69] J. Saarinen, S. Honkanen, S.I. Najafi, and J. Huttunen, “Double-ion exchange process in glass for the fabrication of computer-generated waveguide holograms”, Appl. Opt. 33 (16), 3353-3359 (1994).
  • [70] R.P. Salmio, J. Saarinen, J. Turunen, and A. Tervonen, “Graded-index diffractive elements by thermal ion exchange in glass”, App. Phys. Lett. 66 (8), 917-919 (1995).
  • [71] R.P. Salmio, H. Saarikoski, J. Saarinen, J. Westerholm, and J. Turunen, “Three-dimensionally modulated graded-index diffractive elements by thermal ion exchange in glass”, Opt. Lett. 22 (9), 591-593 (1997).
  • [72] G.C. Righini and G. Molesini, “Design of optical-waveguide homogeneous refracting lenses”, Appl. Opt. 27 (20), 4193-4199 (1988).
  • [73] S.S. Kistler, “Stresses in glass produced by nonuniform exchange of monovalent Ions”, J. Am. Ceram. Soc. 45 (2), 59-68 (1962).
  • [74] A. Brandenburg, “Stress in ion-exchanged glasswaveguides”, J. Lightwave Technol. 4 (10), 1580-1593 (1986).
  • [75] J. Albert and G.L. Yip, “Stress-induced index change for K+- Na+ ion exchange in glass”, Electron. Lett. 23 (14), 737-738 (1987).
  • [76] A.L. Zijlstrra and A.J. Burggraaf, “Fracture phenomena and strength properties of chemically and physically strengthened glass”, J. Non-Cryst. Solids 1, 49-68 (1968).
  • [77] K.K. Mallick and D. Holland, “Strengthening of container glasses by ion-exchange dip coating”, J. Non-Crystalline Solids 351, 2524-2536 (2005).
  • [78] R. Gy, “Ion exchange for glass strengthening”, Materials Science & Engineering B 149, 159-165 (2008).
  • [79] J.M. White and P.F. Heidrich, “Optical waveguide refractive index profiles from measurement of mode indices: A simple analysis”, Applied Optics 15 (1), 151-155 (1976).
  • [80] R. Rogoziński, “Planar waveguide structures produced by the ion exchange method in glass. Selected aspects of the production technology, the measurement of optical properties and numerical modeling of the structures”, Monograph (No 135), Publishing House of Silesian University of Technology, Gliwice, 2007, (in Polish).
  • [81] R. Rogoziński, “Ion Exchange in Glass - The Changes of Glass Refraction”, in Ion Exchange Technologies, ed. Ayben Kilislio¨glu, InTech. http://www.intechope00n.com/ books/ion-exchange-technologies/ion-exchange-in-glass-thechanges- of-glass-refraction (2012).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3fb7cecd-b62b-4d55-8f6b-d5f5d6c966ba
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.