PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical Simulations of 122 mm M-21OF Missile Fragments Propulsion

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Badania numeryczne procesu napędzania odłamków 122 mm rakietowego pocisku M-21OF
Języki publikacji
EN
Abstrakty
EN
This paper presents numerical simulations of 122 mm M-21OF rocket fragments propulsion. A simplified geometry of the rocket was constructed and analysed with two main numerical FE approaches: a mesh-based lagrangian-eulerian FSI method and a coupled meshless SPH-lagrangian approach. The resulting fragment velocities were compared with those obtained from an analytical approach (Gurney formula). The shell fragmentation process was also successfully depicted. Both numerical approaches differed from the analytical velocity results to a comparable degree. Considering that the Gurney energy of a high-explosive is obtained from cylinder expansion tests, results obtained with the Gurney method can be treated as a reference point and validation method for natural fragmentation warhead models.
PL
W pracy przedstawiono badania numeryczne procesu napędzania odłamków 122 mm rakietowego pocisku M-21OF, który jest podstawowym środkiem bojowym polskiej artylerii rakietowej, jednak skuteczność jego głowicy bojowej nie została zadowalająco przebadana. Opracowano uproszczoną geometrię pocisku, którą przeanalizowano za pomocą dwóch głównych podejść numerycznych: siatkowej metody lagrange'owsko-eulerowskiej ze sprzężeniem płyn-ciało stałe (FSI - Fluid Structure Interaction) oraz sprzężonego bezsiatkowego podejścia SPH (Smoothed Particle Hydrodynamics) z siatkowym opisem lagrange'owskim. Uzyskano wartości prędkości początkowych odłamków, które porównano z prędkościami uzyskanymi analitycznie ze wzoru Gurneya. Odwzorowano także proces fragmentacji pocisku. Oba podejścia numeryczne różniły się od wyników analitycznych w niewielkim, porównywalnym stopniu. Biorąc pod uwagę, że energia Gurneya materiału wybuchowego jest wyznaczana z badań doświadczalnych, wyniki uzyskane metodą Gurneya mogą być traktowane jako punkt odniesienia i metoda walidacji wyników uzyskanych dla modeli cylindrycznych głowic bojowych o naturalnej fragmentacji.
Twórcy
  • Military University of Technology, Faculty of Mechatronics, Armament and Aerospace, 2. Gen. Sylwestra Kaliskiego Str., 00-908 Warsaw, Poland
  • Military University of Technology, Faculty of Mechatronics, Armament and Aerospace, 2. Gen. Sylwestra Kaliskiego Str., 00- 908 Warsaw, Poland
Bibliografia
  • 1. Carleone, Joseph. 1993. Tactical Missile Warheads. American Institute of Aeronautics and Astronautics, Incorporated.
  • 2. Zecevic, Berko, Jasmin Terzic, Alan Catovic, and Sabina Serdarevic-Kadic. 2011. "Characterization of distribution parameters of fragment mass and number for conventional projectiles." Presented at 14th International Seminar New Trends In Research Of Energetic Materials, 13-15 April 2011, Pardubice, Czech Republic.
  • 3. Mott, N. F. 1943. "Fragmentation of H. E. Shells: a Theoretical Formula for the Distribution of Weights of Fragments." In Grady, D. (Ed.), Fragmentation of Rings and Shells: The Legacy of N. F. Mott, Springer, Berlin, Heidelberg, pp. 227-241.
  • 4. Gurney, R. W. 1943. The Initial Velocities of Fragments from Bombs, Shell, Grenades. Defense Technical Information Center, Fort Belvoir, VA.
  • 5. Kennedy, J. E. 1970. "Gurney Energy of Explosives; Estimation of the Velocity and Impulse Imparted to Driven Metal." Report No. SC-RR-7-790. Sandia Laboratories, Albuquerque, New Mexico.
  • 6. Charron, Y. J. 1979. Estimation of Velocity Distribution of Fragmenting Warheads Using a Modified Gurney Method. Air Force Institute of Technology, Wright-Patterson AFB, Dayton, Ohio.
  • 7. Wacławik, Kamil, Konrad Sienicki, Krzysztof Motyl, and Dariusz Rodzik. 2015. "Computer Simulation of Surface-to-Surface Missile Warheads" (in Polish). Mechanik 7: 921-930.
  • 8. Helte, Andreas, Olof Andersson, and Patrik Lundberg. 2019. "Deformation, fragmentation and acceleration of a controlled fragmentation charge casing." Defence Technology 15: 786-795.
  • 9. Zhou, Mingxue, Cheng Wu, Fengjiang An, Shasha Liao, Xiaoxia Yuan, Dongyu Xue, and Jian Liu. 2020. "Acceleration Characteristics of Discrete Fragments Generated from Explosively-Driven Cylindrical Metal Shells." Materials 13 (9): 2066-1-17.
  • 10. Koch, Andre, Niklaus Arnold, and Markus Estermann. 2002. "A Simple Relation between the Detonation Velocity of an Explosive and its Gurney Energy." Propellants, Explosives, Pyrotechnics 27 (6): 365-368.
  • 11. Klus, Stanisław. 1965. Warheads of Rocket Projectiles (in Polish). Military University of Technology, Warsaw.
  • 12. Tanapornraweekit, Ganchai, and W. Kulsirikasem. 2011. "Effects of Material Properties of Warhead Casing on Natural Fragmentation Performance of High Explosive (HE) Warhead." World Academy of Science, Engineering and Technology International Journal of Physical and Mathematical Sciences 5 (11): 1770-1775.
  • 13. Moxnes, F. John, Anne K. Prytz, Øyvind Frøyland, Siri Klokkehaug, Stian Skriudalen, Eva Friis, Jan A. Teland, Cato Dørum, and Gard Ødegårdstuen. 2014. "Experimental and numerical study of the fragmentation of expanding warhead casings by using different numerical codes and solution techniques." Defence Technology 10 (2): 161-176.
  • 14. Zhao, Chuan, Shushan Wang, Cean Guo, Donggi Liu, and Feng Ma. 2020. "Experimental study on fragmentation of explosive loaded steel projectile." International Journal of Impact Engineering 144: 103610.
  • 15. Helte, Andreas, Olof Andersson, and Patrik Lundberg. 2022. "Influence of friction on a double-cased fragmenting warhead." In Proceedings of the 32nd International Symposium on Ballistics, May 8-13, 2022, Reno, USA.
  • 16. Imbierowicz, Wojciech. 2022. Numerical investigations of propulsion efficiency of 122 mm rocket artillery shell fragments (in Polish), MSc Thesis. Warsaw: Military University of Technology.
  • 17. Gurov, S. V. 2006. Multiple Rocket Launchers - Review. Tula.
  • 18. Stępień, Jerzy, Bogdan Garbarz, Marek Burdek, Jarosław Marcisz, et al. 2009. "Modern Steel Materials for the Manufacture of Fittings, Cases, Rocket and Artillery Shell Bodies and Armour Plating" (in Polish). Issues of Armament Technology 38 (111): 15-26.
  • 19. Materniak, Jan, Jerzy Stępień, Zdzisław Kaczmarek. 2010. "Research and Technological Achievements in the Production of Modern Ammunition Meeting NATO Standards" (in Polish). Prace IMZ 1 (162): 105-109.
  • 20. Johnson, R. Gordon, and William H. Cook. 1983. "A Constitutive Model and Data for Metals." In Proceedings of the 7th International Symposium on Ballistics, pp. 541-547.
  • 21. Johnson, R. Gordon, and William H. Cook. 1985. "Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures." Engineering Fracture Mechanics 21: 31-48.
  • 22. Akram, Sohail, Syed Husain Imran Jaffery, Mushtaq Khan, Muhammad Fahad, Aamir Mubashar, and Liaqad Aliet. 2018. "Numerical and experimental investigation of Johnson–Cook material models for aluminum (Al 6061-T6) alloy using orthogonal machining approach." Advances in Mechanical Engineering 10 (9): 1-14.
  • 23. Wuertemberger, Luke, and Anthony N. Palazotto. 2016. "Evaluation of Flow and Failure Properties of Treated 4130 Steel." J. Dynamic Behavior Mater. 2: 207-223.
  • 24. ASM handbook (10th edition). 1990. ASM International, Materials Park, Ohio.
  • 25. Hallquist, J. O. 2019. LS-DYNA Theory Manual. Livermore Software Technology Corporation (LSTC).
  • 26. Steinberg, J. Daniel. 1996. Equation of State and Strength Properties of Selected Materials. Lawrence Livermore National Laboratory.
  • 27. Phadnis, A. Vaibhav, and Vadim V. Silberschmidt. 2015. "Finite element analysis of hypervelocity impact behaviour of CFRP-Al/HC sandwich panel." EPJ Web of Conferences 94: 04051-1-5.
  • 28. Vadhe, P. P., R. B. Pawar, R. K. Sinha, S. N. Asthana, and A. Subhananda Rao. 2008. "Cast aluminized explosives (review)." Combust Explos Shock Waves 44 (4): 461-477.
  • 29. Dobratz, B. M. 1985. LLNL Explosives Handbook Properties of Chemical Explosives and Explosive Simulants. Technical Report No. UCRL-52997. US Department of Commerce, Livermore, University of California.
  • 30. Andreev, V., A. Guskov, K. Milevsky. 2018. Explosive Materials (in Russian), Novosibirsk State Technical University.
  • 31. Yue, Peng, Xinping Long, Xiaohua Jiang, and Zhiming Zhang. 2020. "Only Numerical Modeling of Detonation Properties for Some Metal Azides." Propellants, Explosives, Pyrotechnics 45 (4): 600-606.
  • 32. Trzciński, Waldemar, and Stanisław Cudziło. 2006. "Characteristics of High Explosive Materials Obtained from Cylinder Test Data." Chinese Journal of Energetic Materials 14 (1): 1-7.
  • 33. Loiseau, Jason, William Georges, Andrew J. Higgins. 2016. "Validation of the Gurney Model in Planar Geometry for a Conventional Explosive." Prop., Explos., Pyrotech. 41 (4): 655-664.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3fb5b47b-44eb-49c0-8241-236b39443ca6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.