Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Convolutional neural networks (CNNs) are a specialized class of deep neural networks. In the present era, these have emerged as highly effective tools for a variety of computer vision tasks. Nonetheless, for classification tasks, the application of a single CNN model is often not sufficient to achieve high precision and robustness. Ensemble learning is a machine learning technique that can improve classification performance through combining multiple models into one. With this method, individual models exchange each other's best performance for each class, resulting in improved overall accuracy. In this work, we studied the performance of CNN models for brain tumor classification. As an outcome, we propose a novel ensemble CNN model for this purpose. We utilized the dataset comes from Nanfang Hospital, which include 3064 MRI images categorized into three types of brain tumor (glioma, meningioma and pituitary). First, we assessed well-known CNN models for their ability to classify brain tumors. Next, we tested several ensemble transfer learning models and created one that utilizes the strengths of the most efficient CNN models. The comparative analysis of model performance demonstrated that the examined ensemble CNN models outperformed all single models. Moreover, regarding evaluation metrics, the proposed model achieved global accuracy of 94% and the highest precision and recall, the F1 score of being 94%. Experimental results revealed that model architecture and ensemble methods have a significant impact on brain tumor classification performance.
Wydawca
Rocznik
Tom
Strony
204--216
Opis fizyczny
Bibliogr. 55 poz., fig., tab.
Twórcy
autor
- Department of Computer Science, Lublin University of Technology, Nadbystrzycka 36B, 20-618 Lublin, Poland
autor
- Systems Research Institute, Polish Academy of Sciences, Newelska 6, 01-447 Warsaw, Poland
- Department of Computer Science, Lublin University of Technology, Nadbystrzycka 36B, 20-618 Lublin, Poland
Bibliografia
- 1. Ene C.I., Ferguson S.D. Surgical Management of Brain Metastasis: Challenges and Nuances. Front Oncol 2022 Mar 14; 12. https://doi.org/10.3389/ fonc.2022.847110
- 2. Crosby D., Bhatia S., Brindle K.M., Coussens L.M., Dive C., Emberton M., Esener S., Fitzgerald R.C., Gambhir S.S., Kuhn P., Rebbeck T.R., Balasubramanian S. Early detection of cancer. Science 2022 Mar 18; 375(6586). https://doi.org/10.1126/science. aay9040
- 3. Beane J., Campbell J.D., Lel J., Vick J., Spira A. Genomic approaches to accelerate cancer interception. Lancet Oncol 2017 Aug; 18(8): e494-e502. https:// doi.org/10.1016/S1470-2045(17)30373-X
- 4. Hossain T., Shishir F.S., Ashraf M., Al Nasim M.A., Muhammad Shah F. Brain Tumor Detection Using Convolutional Neural Network. In: 2019 1st International Conference on Advances in Science, Engineering and Robotics Technology (ICASERT), Bangladesh, Dhaka, May 3-5 2019. IEEE; 2019. https://doi.org/10.1109/icasert.2019.8934561
- 5. R. Tamilaruvi, R. Vijayalakshmi, M. Ganthimathi, R. Surendiran, M. Thangamani, S. Satheesh. Brain Tumor Detection in MRI Images using Convolutional Neural Network Technique. SSRG International Journal of Electrical and Electronics Engineering 2022 Dec 31; 9(12): 198-208. https://doi. org/10.14445/23488379/IJEEE-V9I12P118
- 6. Vollmuth P., Foltyn M., Huang R.Y., Galldiks N., Petersen J., Isensee F., et al. AI-based decision support improves reproducibility of tumor response assessment in neuro-oncology: an international multireader study. Neuro-Oncology 2022 Aug 2; 25(3) : 533-545. https://doi.org/10.1093/neuonc/noac189
- 7. Sollini M., Bartoli F., Marciano A., Zanca R., Slart R.H., Erba P.A. Artificial intelligence and hybrid imaging: the best match for personalized medicine in oncology. Eur J Hybrid Imaging 2020; 4(1). doi: 10.1186/s41824-020-00094-8.
- 8. Khalighi S., Reddy K., Midya A., Pandav K.B., Madabhushi A., Abedalthagafi M. Artificial intelligence in neuro-oncology: advances and challenges in brain tumor diagnosis, prognosis, and precisionvtreatment. NPJ Precis Oncol 2024 Mar 29; 8(1). https://doi.org/10.1038/s41698-024-00575-0
- 9. Yadav S.S., Jadhav S.M. Deep convolutional neural network based medical image classification for disease diagnosis. J Big Data 2019 Dec; 6(1). https:// doi.org/10.1186/s40537-019-0276-2
- 10. Simonyan K., Zisserman A. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv 2014; 1409.1556.
- 11. O’Sullivan B., Woodridge M. Artificial Intelligence: Foundations, theory, and algorithms. Book Series, 2015-2021; (9).
- 12. Aggarwal C.C. Neural Networks and Deep Learning. Cham: Springer International Publishing, 2018. https://doi.org/10.1007/978-3-319-94463-0
- 13. Chollet, F. Deep Learning with Python. Chollet & Dysart - Manning Publications, 2021.
- 14. Archana R., Jeevaraj P.S. Deep learning models for digital image processing: a review. Artif Intell Rev 2024; 57(1). https://doi.org/10.1007/ s10462-023-10631-z
- 15. Abbas S., Alhwaiti Y., Fatima A., A Khan M., Adnan Khan M., M Ghazal T., Kanwal A., Ahmad M., Sabri Elmitwally N. Convolutional Neural Network Based Intelligent Handwritten Document ecognition. Comput Mater Amp Contin 2022; 70(3): 4563 81. https://doi.org/10.32604/cmc.2022.021102
- 16. Litjens G., Kooi T., Bejnordi B.E., Setio A.A., Ciompi F., Ghafoorian M., van der Laak J.A., van Ginneken B., Sánchez C.I. A survey on deep learning in medical image analysis. Medical image analysis 2017 Dec; 42: 60-88. https://doi.org/10.1016/j. media.2017.07.005
- 17. Almabdy S., Elrefaei L. Deep Convolutional Neural Network-Based Approaches for Face Recognition. Appl Sci 2019 Oct 17; 9(20): 4397. https://doi. org/10.3390/app9204397
- 18. Charytanowicz M., Kowalski P.A., Lukasik S., Kulczycki P., Czachor H. Deep learning for porous media classification based on micro-ct images. In: 2022 international joint conference on neural networks (IJCNN), Padua, Italy Jul 18-23 2022. IEEE. https://doi.org/10.1109/ijcnn55064.2022.9891899
- 19. Łukasik E., Charytanowicz M., Miłosz M., Tokovarov M., Kaczorowska M., Czerwiński D., Zientarski T. Recognition of handwritten Latin characters with diacritics using CNN. Bulletin of the Polish Academy of Sciences: Technical Sciences 2021; 69: 1–12.
- 20. Fabijańska A., Danek M., Barniak J. Wood species automatic identification from wood core images with a residual convolutional neural network. Comput Electron Agric 2021 Feb; 181:105941. https:// doi.org/10.1016/j.compag.2020.105941
- 21. He K., Zhang X., Ren, S., Sun, J. Deep residua learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, 770-778.
- 22. Su C., Xu S.J., Zhu K.Y., Zhang X.C. Rock classification in petrographic thin section images based on concatenated convolutional neural networks. Earth Sci Inform 2020 Aug 23; 13(4): 1477-84. https:// doi.org/10.1007/s12145-020-00505-1
- 23. Anwar S.M., Majid M., Qayyum A., Awais M., Alnowami M., Khan M.K. Medical Image Analysis using Convolutional Neural Networks: A Review. Journal of Medical Systems 2018 Oct 8; 42(11). https://doi.org/10.1007/s10916-018-1088-1
- 24. Nogay H, Akinci TC, Yilmaz M. Comparative Experimental Investigation and Application of Five Classic Pre-Trained Deep Convolutional Neural Networks via Transfer Learning for Diagnosis of Breas Cancer. Adv Sci Technol Res J. 2021 Sep 1;15(3):1-8. https://doi.org/10.12913/22998624/137964
- 25. Szala M, Łatka L, Awtoniuk M, Winnicki M, Michalak M. Neural Modelling of APS Thermal Spray Process Parameters for Optimizing the Hardness, Porosity and Cavitation Erosion Resistance of Al2O3-13 wt% TiO2 Coatings. Processes. 2020 Nov 26;8(12):1544. https://doi.org/10.3390/pr8121544
- 26. Awtoniuk M, Majerek D, Myziak A, Gajda C. Industrial Application of Deep Neural Network for Aluminum Casting Defect Detection in Case of Unbalanced Dataset. Adv Sci Technol Res J. 2022 Nov 1;16(5):120-8. https://doi. org/10.12913/22998624/154963
- 27. Gatta GD, Birch WD, Rotiroti N. Reinvestigation of the crystal structure of the zeolite gobbinsite: A single-crystal X-ray diffraction study. Am Mineral. 2010 Mar 25;95(4):481-6. https://doi.org/10.2138/ am.2010.3390
- 28. Machrowska A, KarpińskI R, Maciejewski M, Jonak J, Krakowski P. Application of eemd-dfa algorithms and ann classification for detection of knee osteoarthritis using vibroarthrography. Appl Comput Sci. 2024 Jun 30 https://doi.org/10.35784/acs-2024-18
- 29. Woźniak M, Połap D, Capizzi G, Sciuto GL, Kośmider L, Frankiewicz K. Small lung nodules detection based on local variance analysis and probabilistic neural network. Comput Methods Programs Biomed. 2018 Jul; 161:173-80. https:// doi.org/10.1016/j.cmpb.2018.04.025
- 30. Ren Y, Zhang L, Suganthan PN. Ensemble Classification and Regression-Recent Developments, Applications and Future Directions. IEEE Comput Intell Mag. 2016 Feb;11(1):41-53. https://doi. org/10.1109/mci.2015.2471235
- 31. Wang G., Li W., Ourselin S., Vercauteren T., Automatic brain tumor segmentation using convolutional neural networks with test-time augmentation. In Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries: 4th International Workshop, BrainLes 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 16, 2018, Revised Selected Papers, Part II 4, pp. 61-72, Springer International Publishing.
- 32. Sadoon T.A., Ali M.H. Deep learning model for glioma, meningioma and pituitary classification. International Journal of Advances in Applied Sciences 2021 Mar 1; 10(1): 88. https://doi.org/10.11591/ ijaas.v10.i1.pp88-98
- 33. Dogan A., Birant D. A Weighted Majority Voting Ensemble Approach for Classification. In: 2019 4th International Conference on Computer Science and Engineering (UBMK), Samsun, Turkey, Sep 11-15 2019. IEEE.
- 34. Badža M.M., Barjaktarović M.Č. Classification of Brain Tumors from MRI Images Using a Convolutional Neural Network. Applied Sciences 2020 Mar 15; 10(6): 1999. https://doi.org/10.3390/app10061999
- 35. Saeedi S., Rezayi S., Keshavarz H., R Niakan Kalhori S. MRI-based brain tumor detection using convolutional deep learning methods and chosen machine learning techniques. BMC Medical Informatics and Decision Making 2023 Jan 23; 23(1). https://doi.org/10.1186/s12911-023-02114-6
- 36. Sharma A.K., Nandal A., Dhaka A., Zhou L., Alhudhaif A., Alenezi F., Polat K. Brain tumor classification using the modified ResNet50 model based on transfer learning. Biomedical Signal Processing and Control 2023 Sep; 86: 105299. https://doi. org/10.1016/j.bspc.2023.105299
- 37. Fooladi S., Farsi H., Mohamadzadeh S. Segmenting the Lesion Area of Brain Tumor using Convolutional Neural Networks and Fuzzy K-Means Clustering. International Journal of Engineering 2023; 36(8): 1556-68. https://doi.org/10.5829/ije.2023.36.08b.15
- 38. Kang J., Ullah Z., Gwak J. MRI-Based Brain Tumor Classification Using Ensemble of Deep Features and Machine Learning Classifiers. Sensors 2021 Mar 22; 21(6): 2222. https://doi.org/10.3390/s21062222
- 39. Jolly K. Machine Learning with Scikit-Learn Quick Start Guide: Classification, Regression, and Clustering Techniques in Python. Packt Publishing, Limited, 2018.
- 40. Liang J. Confusion Matrix: Machine Learning. POGIL Activity Clearinghouse 2022; 3(4).
- 41. Chen, S., Luc, N. M. RRMSE Voting Regressor: A weighting function based improvement to ensemble regression. arXiv preprint arXiv 2022;
- 42. Kuncheva L. I. Combining pattern classifiers: methods and algorithms. John Wiley & Sons, 2
- 43. Marcot BG, Hanea AM. What is an optimal value of k in k-fold cross-validation in discrete Bayesian network analysis? Comput Stat. 2020 Jun 13. https:// doi.org/10.1007/s00180-020-00999-9
- 44. Tadeusiewicz R. Sieci neuronowe (Vol. 110). Akademicka Oficyna Wydawnicza RM, 1993.
- 45. Documentation for Keras library; https://keras.io/ api/applications/vgg/ (Accessed: 10.06.2024)
- 46. Rohith S, Prakash MS, Anitha R, Kumar KS, Yogeswara Sai K. Detection of Brain Tumor using VGG16. In: 2023 8th International Conference on Communication and Electronics Systems (ICCES); 2023 Jun 1-3; Coimbatore, India. IEEE; 2023. https://doi.org/10.1109/icces57224.2023.10192639
- 47. Rastogi D, Johri P, Tiwari V. Augmentation based detection model for brain tumor using VGG 19. Int J Comput Digit Syst. 2023 May 30; 13(1):1227-37. https://doi.org/10.12785/ijcds/1301100
- 48. Singamshetty R, Sruthi S, Chandhana K, Kollem S, Prasad CR. Brain Tumor Detection Using the Inception Deep Learning Technique. In: 2023 International Conference on Recent Trends in Electronics and Communication (ICRTEC); 2023 Feb 10-11; Mysore, India. IEEE; 2023
- 49. Azzahra TS, Jessica Jesslyn Cerelia, Farid Azhar Lutfi Nugraha, Anindya Apriliyanti Pravitasari. MRI-Based Brain Tumor Classification Using Inception Resnet V2. Enthusiastic. 2023 Oct 24: 163-75. https://doi.org/10.20885/enthusiastic.vol3. iss2.art4
- 50. Sujatha K, Rao BS. Densenet201:A Customized DNN Model for Multi-Class Classification and Detection of Tumors Based on Brain MRI Images. In: 2023 Fifth International Conference on Electrical, Computer and Communication Technologies (ICECCT); 2023 Feb 22-24; Erode, India: IEEE; 2023. https:// doi.org/10.1109/icecct56650.2023.10179642
- 51. Chollet F. Xception: Deep Learning with Depthwise Separable Convolutions. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR); 2017 Jul 21-26; Honolulu, HI. IEEE; 2017. https://doi.org/10.1109/cvpr.2017.195
- 52. Popli R, Kansal I, Verma J, Khullar V, Kumar R, Sharma A. ROAD: Robotics-Assisted Onsite Data Collection and Deep Learning Enabled Robotic Vision System for Identification of Cracks on Diverse Surfaces. Sustainability. 2023 Jun 9;15(12):9314. https://doi.org/10.3390/su15129314
- 53. Ahmad A., Brown G. Random Projection Random Discretization Ensembles - Ensembles of Linear Multivariate Decision Trees. IEEE Transactions on Knowledge and Data Engineering 2014 May; 26(5): 1225-39. https://doi.org/10.1109/tkde.2013.134
- 54. Mohammed A., Kora R. A Comprehensive Review on Ensemble Deep Learning: Opportunities and Challenges. Journal of King Saud University - Computer and Information Sciences 2023 Feb; 35(2): 757-774.
- 55. Database used during research. https://doi. org/10.6084/m9.figshare.1512427.v5 (Accessed: 10.06.2024
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3fae15db-2b91-4f8b-aa8d-a66bb51a68c9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.