Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This study was undertaken to estimate the energy potential of municipal solid waste via creating a relationship between the high heating value (HHV) and the fractions of physical composition of municipal solid waste MSW (% food, % plastic, % paper, % wood, % textile) into the two scenarios, namely wet MSW (as discarded) and dry (free moisture). The created models were determined based on the results of obtained from the analysis of the components of the Al-Diwaniyah MSW and then from previous studies which involved experimental ultimate analysis (% C, % O, % H, % N, %S) of MSW, supported by the equations and models of previous studies which were used for HHV calculation. SPSS Statistical software was used to prepare the models. For each scenario, the input datasets were 60 cases, taking into account the minimization of the data and the average of HHV that result from equations. Four models were created, two models for each status where R2 was 1.00 and 0.999 for dry and wet situation, respectively. However, the equations of verification process showed that the models which depended on the dry fractions are more accurate. The produced HHV from the dry and wet MSW components in the Al-Diwaniyah City is 8655 KJ/Kg and 6440 KJ/Kg, respectively (as discarded).
Czasopismo
Rocznik
Tom
Strony
11--19
Opis fizyczny
Bibliogr. 39 poz., rys., tab.
Twórcy
autor
- Civil Engineering Department, College of Engineering, University of Al Qadisiyah, Al-Qadisiyah, Iraq
autor
- Ministry of Environment – Environment Directorate of Al-Qadisiyah, Iraq
autor
- Civil Engineering Department, College of Engineering, University of Al Qadisiyah, Al-Qadisiyah, Iraq
autor
- Department of Civil, Environmental and Natural Resources Engineering, Lulea University, Luleå, Sweden
Bibliografia
- 1. Abbas, M. D., A. M. Falih and K. G. M. Al-Mutawki (2020). A Comparative Study Between Municipal Solid Wastes Management Options in Processing Stage of Al-Diwaniyah city / Iraq. Journal of Physics: Conference Series 1664: 012131.
- 2. Abdel-Shafy, H. I. and M. S. M. Mansour (2018). Solid waste issue: Sources, composition, disposal, recycling, and valorization. Egyptian Journal of Petroleum 27(4): 1275–1290.
- 3. Abidoye, L. and F. Mahdi (2014). Novel Linear and Nonlinear Equations for the Higher Heating Values of Municipal Solid Wastes and the Implications of Carbon to Energy Ratios. Journal of Energy Technologies and Policy 4: 14–27.
- 4. Abu-Qudais, M. d. and H. A. Abu-Qdais (2000). Energy content of municipal solid waste in Jordan and its potential utilization. Energy Conversion and Management 41(9): 983–991.
- 5. Acikkar, M. and O. Sivrikaya (2018). Prediction of gross calorific value of coal based on proximate analysis using multiple linear regression and artificial neural networks. Turkish Journal Of Electrical Engineering & Computer Sciences 26: 2541–2552.
- 6. Akkaya, E. and A. Demir (2009). Energy Content Estimation Of Municipal Solid Waste By Multiple Regression Analysis.
- 7. Antonopoulos, I., A. Karagiannidis, E. Kalogirou, 2010. Estimation of municipal solid waste heating value in Greece in the frame of formulating appropriate scenarios on waste treatment.
- 8. Basnayake, B., P. Boyagoda, S. Menikpura and J. Kularatne (2007). Estimations and mathematical model predictions of energy contents of municipal solid waste (MSW) in Kandy.
- 9. Bousdira, K., L. Nouri, J. Legrand, Y. Bafouloulou, M. Abismail, H. Chekhar and M. Babahani (2014). An overview of the chemical composition of phoenicicole biomass fuel in Guerrara oasis. Proceedings of the 3rd International Symposium on Energy from Biomass and Waste (VENICE 2010), Venice, Italy, CD-ROM edition, 8–11 November (2010).
- 10. Ch, T., T. Ogwueleka and F. Ogwueleka (2012). Modelling Energy Content Of Municipal Solid Waste Using Artificial Neural Network. Iran. J. Environ. Health. Sci. Eng 7: 259–266.
- 11. Chai, S. and R. Zakaria (2006). Investigation on combustion characteristics of municipal solid waste from Penang State Malaysia.
- 12. Chang, Y. F., C. J. Lin, J. M. Chyan, I. M. Chen and J. E. Chang (2007). Multiple regression models for the lower heating value of municipal solid waste in Taiwan. Journal of Environmental Management 85(4): 891–899.
- 13. Durogbitan, A. A. (2019). Evaluation of Impact of Solid Wastes and Its Potential as A Source of Renewable Energy.
- 14. A Case Study from Minna and his Environs, Nigeria. Acta Scientific Agriculture 3(5): 145–152.
- 15. Gidarakos, E., G. Havas and P. Ntzamilis (2006). Municipal solid waste composition determination supporting the integrated solid waste management system in the island of Crete. Waste Management 26(6): 668–679.
- 16. Group, T. W. B. (2021). Trends in Solid Waste Management.” 2021, from https://datatopics.worldbank.org/what-a-waste/trends_in_solid_waste_management.html.
- 17. Gupta, N., K. K. Yadav and V. Kumar (2015). A review on current status of municipal solid waste management in India. Journal of Environmental Sciences 37: 206–217.
- 18. Huda, M. (2014). Development of new equations for estimating gross calorific value of Indonesian coals.
- 19. Ibikunle, R. A., I. F. Titiladunayo, B. O. Akinnuli, S. O. Dahunsi and T. M. A. Olayanju (2019). Estimation of power generation from municipal solid wastes: A case Study of Ilorin metropolis, Nigeria. Energy Reports 5: 126–135.
- 20. Kathiravale, S., M. N. Muhd Yunus, K. Sopian, A. H. Samsuddin and R. A. Rahman (2003). Modeling the heating value of Municipal Solid Waste. Fuel 82(9): 1119–1125.
- 21. Khuriati, A., W. Budi, M. Nur, I. Istadi and G. Suwoto (2017). Modeling of heating value of municipal solid waste based on ultimate analysis using stepwise multiple linear regression in semarang. ARPN Journal of Engineering and Applied Sciences 12.
- 22. Khuriati, A., W. Setiabudi, M. Nur and I. Istadi (2015). Heating value prediction for combustible fraction of municipal solid waste in Semarang using backpropagation neural network.
- 23. Kumar, S., A. N. Mondal, S. A. Gaikwad, S. Devotta and R. N. Singh (2004). “Qualitative assessment of methane emission inventory from municipal solid waste disposal sites: a case study.” Atmospheric Environment 38: 4921.
- 24. Kwaghger, A., Enyejoh, L. A. & Iortyer, H. A. (2017). The development of equations for estimating high heating values from proximate and ultimate analysis for some selected indigenous fuel woods.
- 25. Leme, M. M. V., M. H. Rocha, E. E. S. Lora, O. J. Venturini, B. M. Lopes and C. H. Ferreira (2014). Techno-economic analysis and environmental impact assessment of energy recovery from Municipal Solid Waste (MSW) in Brazil. Resources, Conservation and Recycling 87: 8–20.
- 26. Lin, X., F. Wang, Y. Chi, Q. Huang and J. Yan (2015). A simple method for predicting the lower heating value of municipal solid waste in China based on wet physical composition. Waste Management 36: 24–32.
- 27. Liu, J. I., R. D. Paode and T. M. Holsen (1996). Modeling the Energy Content of Municipal Solid Waste Using Multiple Regression Analysis. J Air Waste Manag Assoc 46(7): 650–656.
- 28. Lopes, E. J., L. A. Okamura and C. I. Yamamoto (2015). Formation of dioxins and furans during municipal solid waste gasification. Brazilian Journal of Chemical Engineering 32: 87–97.
- 29. Meraz, L., A. Domı́nguez, I. Kornhauser and F. Rojas (2003). A thermochemical concept-based equation to estimate waste combustion enthalpy from elemental composition. Fuel 82(12): 1499–1507.
- 30. Meraz, L., M. Oropeza and A. Dominguez (2002). Prediction of the Combustion Enthalpy of Municipal Solid Waste. The Chemical Educator 7(2): 66–70.
- 31. Nagarajan, R., S. T and E. Lakshmanan (2010). Groundwater Contamination due to municipal solid waste disposal – A GIS based study in Erode city. International Journal of Environmental Sciences 1: 39–55.
- 32. Nzihou, J., S. Hamidou, M. Bouda, J. Koulidiati and B. Segda (2014). Using Dulong and Vandralek Formulas to Estimate the Calorific Heating Value of a Household Waste Model.
- 33. Olatunji, O., S. Akinlabi, N. Madushele and P. Adedeji (2019). Estimation of Municipal Solid Waste (MSW) combustion enthalpy for energy recovery. EAI Endorsed Transactions on Energy Web 6.
- 34. Olatunji, O., S. Akinlabi, N. Madushele, P. Adedeji and F. Ishola (2019). Multilayer perceptron artificial neural network for the prediction of heating value of municipal solid waste. AIMS Energy 7: 944–956.
- 35. Omari, A. (2015). Characterization of Municipal solid waste for energy recovery. A case study of Arusha , Tanzania.
- 36. Ryu, C. (2010). Potential of Municipal Solid Waste for Renewable Energy Production and Reduction of Greenhouse Gas Emissions in South Korea. Journal of the Air & Waste Management Association 60(2): 176–183.
- 37. Scarlat, N., V. Motola, J. F. Dallemand, F. MonfortiFerrario and L. Mofor (2015). Evaluation of energy potential of Municipal Solid Waste from African urban areas. Renewable and Sustainable Energy Reviews 50: 1269–1286.
- 38. Siddiqui, F. Z., S. Zaidi, S. Manuja, S. Pandey and M. E. Khan (2017). Development of models for prediction of the energy content of disposed MSW from an unsecured landfill. Waste Manag Res 35(11): 1129–1136.
- 39. Zhou, H., A. Meng, Y. Long, Q. Li and Y. Zhang (2014). Classification and comparison of municipal solid waste based on thermochemical characteristics. Journal of the Air & Waste Management Association 64(5): 597–616.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3fad43c9-bd33-4235-9751-d925d30bd479
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.