PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of Tree Shelters and Regeneration Method on Survival and Growth of Cork Oak Plantations in the Maamora Forest, Morocco

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Forests are under intense human pressure, hindering their restoration. A potential solution to regeneration problems is the adoption of tree shelters, which have demonstrated protective benefits in the early establishment of forest plantations. A 9-year study was conducted in the Maamora forest (Morocco) to evaluate the effects of tube shelters and regeneration methods (direct seeding and seedling) on the growth and survival of cork oak (Quercus suber) plantations. A split-plot design was developed with three replicates of 36 plants for each of the four shelter treatments, including T0 (control), T1 (Tubex 1.20 m), T2 (Tubex 1.50 m), and T3 (Tubex 1.80 m) for a total of 964 plants, where periodic inventories were conducted to assess plant survival and growth. Our results show regeneration methods and shelters significantly influenced the survival of cork oak. Direct-seeded plants were more successful than those from seedlings, presenting survival rates of up to 97%. Despite a minimal shelter effect at the beginning, their positive influence was strong later on. Only plants installed with the 1.20 m shelter had an overall success rate of over 50%. Regeneration method had a strong influence on height and diameter growth, with seedling units showing taller plants initially, which shifted to direct-seeded plants in subsequent years. Conversely, the effect of shelters on growth parameters was generally non-significant. Nonetheless, sheltered trees exhibited greater height and diameter than unsheltered trees, particularly in the latter years. Sheltered plants showed an overall faster rate of vertical growth, while unsheltered plants showed faster radial growth.
Rocznik
Strony
360--374
Opis fizyczny
Bibliogr. 59 poz., rys., tab.
Twórcy
  • Botany and Development of Plant and Fungal Resources, Plant and Microbial Biotechnology Research Centre, Biodiversity and Environment, Faculty of Science, Mohammed V University, Rabat, Morocco
  • Centre de Recherche Forestière, Av. Omar Ibn Al Khattab, Rabat 10080, Morocco
  • Botany and Development of Plant and Fungal Resources, Plant and Microbial Biotechnology Research Centre, Biodiversity and Environment, Faculty of Science, Mohammed V University, Rabat, Morocco
  • Centre de Recherche Forestière, Av. Omar Ibn Al Khattab, Rabat 10080, Morocco
  • Centre de Recherche Forestière, Av. Omar Ibn Al Khattab, Rabat 10080, Morocco
  • Botany and Development of Plant and Fungal Resources, Plant and Microbial Biotechnology Research Centre, Biodiversity and Environment, Faculty of Science, Mohammed V University, Rabat, Morocco
  • Laboratoire de Biotechnologie et Physiologie Végétales, Centre de Biotechnologie Végétale et Microbienne Biodiversité et Environnement, Faculté des Sciences, Université Mohammed V de Rabat, Rabat 10000, Morocco
autor
  • Centre de Recherche Forestière, Av. Omar Ibn Al Khattab, Rabat 10080, Morocco
Bibliografia
  • 1. Aafi, A. 2007. Étude de la diversité floristique de l’écosystème de Chêne-liège de la forêt de la Maâmora. Thèse de doctorat d’État, Institut Agronomique et Vétérinaire Hassan II, Rabat, 190.
  • 2. Abdedelhamid, G., Dahmani, J., Elantry, S., et al. 2019. Évaluation de deux parcelles de régénération artificielle de chêne- liège (Quercus suber L.) après vingt-cinq ans de plantation dans la forêt de la Maâmora, Canton E, 109–121.
  • 3. Ammer, C., Mosandl, R. 2007. Which grow better under the canopy of Norway spruce planted or sown seedlings of European beech? Forestry, 80, 385–390. https://doi.org/10.1093/forestry/cpm023
  • 4. Arosa, M.L., Ceia, R.S., Costa, S.R., et al. 2015. Factors affecting cork oak (Quercus suber) regeneration: acorn sowing success and seedling survival under field conditions, Plant Ecology & Diversity, 8(4), 519–528. https://doi.org/10.1080/17550874.2015.1051154
  • 5. Atondo-Bueno, E.J., Bonilla-Moheno, M., López-Barrera, F. 2018. Cost-efficiency analysis of seedling introduction vs. direct seeding of Oreomunnea mexicana for secondary forest enrichment. Forest Ecology and Management, 409, 399–406. https://doi.org/10.1016/j.foreco.2017.11.028
  • 6. Balisky, A.C., Salonius, P., Walli, C., et al. 1995. Seedling roots and forest floor: misplaced and neglected aspects of British Columbia’s reforestation effort? For. Chron., 71, 59–65. https://doi.org/10.5558/tfc71059-1
  • 7. Barnett, J.P. 2014. Direct Seeding Southern Pines: History and Status of a Technique Developed for Restoring Cutover Forests. USDA Forest Service, Southern Research Station, General Technical Report 187, Asheville, NC, 44.
  • 8. Barton, C., Miller, J., Sena, K., et al. 2015. Evaluating the Use of Tree Shelters for Direct Seeding of Castanea on a Surface Mine in Appalachia. Forests. MDPI AG, 6(12), 3514–3527. http://dx.doi.org/10.3390/f6103514
  • 9. Belghazi, B., Badouzi, M., Belghazi, T., et al. 2011. Semis et plantations dans la forêt de chêne-liège de la Maâmora (Maroc) -. Forêt Méditerranéenne, 32(3), 301–314.
  • 10. Belghazi, B., Ezzahiri, M., Amhajar, M., et al. 2001. Régénération artificielle du chêne-liège dans la forêt de la Mâamora (Maroc) Forêt Méditerranéenne, 22(3), 253–261.
  • 11. Belghazi, B., Mounir, F. 2016. Analyse de la vulnérabilité au changement climatique du couvert forestier. Forêt de la Maâmora (Maroc) Édit. FAO, rapport technique, 124.
  • 12. Bergez, J.E., Dupraz, C. 2009. Radiation and thermal microclimate in tree shelter. Agric. For. Meteorol, 149, 179–186.
  • 13. Binkley, C.S. 1997. Preserving nature through intensive plantation forestry: the case for forestland allocation with illustrations from British Columbia. The Forestry Chronicle, 73(5), 553–559.
  • 14. Branco, M., Branco, C., Merouani, H., et al. 2002. Germination success, survival and seedling vigour of Quercus suber acorns in relation to insect damage. For. Ecol. Manag., 166, 159–164.
  • 15. Ceacero, C., Navarro-Cerrillo, C., Díaz-Hernández, J., et al. 2014. Is tree shelter protection an effective complement to weed competition management in improving the morpho-physiological response of holm oak planted seedlings? iForest, 7(5), 289–299.
  • 16. Cherki, K. 2013. Analyse de la répartition spatiale des incendies de forêt en fonction des facteurs anthropiques, écologiques et biophysiques. Le cas de la forêt de la Mâamora (Maroc septentrional) Études caribéennes, 20. https://doi.org/10.4000/etudescaribeennes.10978
  • 17. Crouzeilles, R., Beyer, H.L., Monteiro, L.M., et al. 2020. Achieving cost-effective landscape-scale forest restoration through targeted natural regeneration. Conservation Letters, 13, e12709. https://doi.org/10.1111/conl.12709
  • 18. Defaa, C., Elantry, S., El Alami, S.L., et al. 2015. Effects of Tree Shelters on the Survival and Growth of Argania spinosa Seedlings in Mediterranean Arid Environment. International Journal of Ecology, 124075, 6. https://doi.org/10.1155/2015/124075
  • 19. Dorji, T., Facelli, J.M., Norbu, T., et al. 2020. Tree shelters facilitate brown oak seedling survival and establishment in a grazing-dominant forest of Bhutan, Eastern Himalaya. Restor Ecol, 28, 1145–1157. https://doi.org/10.1111/rec.13176
  • 20. El Boukhari, M., Brhadda, N., Gmira, N. 2016. Contribution à l’étude de la régénération artificielle du chêne liège (Quercus suber L.) vis-à-vis du contenu minéral des feuilles et des paramètres physicochimiques des sols de la Maâmora (Maroc). Revue « Nature Technologie ». C- Sciences de l’Environnement, C, 26–39.
  • 21. FAO. 2020. Global Forest Resources Assessment 2020 (FRA 2020), Food and Agriculture Organization of the United Nations, Food and Agriculture Organization of the United Nations, Rome. https://doi.org/10.4060/ca9825en
  • 22. Gatti, L.V., Basso, L.S., Miller, J.B., et al. 2021. Amazonia as a carbon source linked to deforestation and climate change. Nature, 595, 388–393. https://doi.org/10.1038/s41586-021-03629-6
  • 23. Gauquelin, T., Michon, G., Joffre, R., et al. 2016. Mediterranean forests, land use and climate change: a social-ecological perspective, Reg. Environ. Change. http://dx.doi.org/10.1007/s10113-016-0994-3
  • 24. González-Rodríguez, V., Navarro-Cerrillo, R.M., Villar, R. 2011. Artificial regeneration with Quercus ilex L. and Quercus suber L. by direct seeding and planting in southern Spain. Annals of Forest Science 68, 637–646. https://doi.org/10.1007/s13595-011-0057-3
  • 25. Hallett, L.M., Standish, R.J., Hobbs, R.J. 2011. Seed mass and summer drought survival in a Mediterranean-climate ecosystem. Plant Ecology, 212, 1479–1489.
  • 26. Hallsby, G., Ahnlund Ulvcrona, K., Karlsson, A., et al. 2015. Effects of intensity of forest regeneration measures on stand development in a nationwide Swedish field experiment. Forestry: An Int J Forest Research, 88(4), 441–453.
  • 27. Jonsson, A., Elfving, B., Hjelm, K., et al. 2022. Will intensity of forest regeneration measures improve volume production and economy? Scandinavian Journal of Forest Research, 37(3), 200–212. https://doi.org/10.1080/02827581.2022.2085784
  • 28. Kushla, J.D. 2015. Forest Seedling Availability from In-state and Regional Nurseries, 2015–2016, MTN 4E. Department of Forestry, Mississippi State University, 10.
  • 29. Laaribya, S., Alaoui, A., Gmira, N. 2013. Analyse de la dynamique des espaces forestiers dans la Mamora: Etude de cas dans les trois communes rurales de Haddada, Kceibia et Dar Belamri. Ann. Rech. For. Maroc, 42, 95–115.
  • 30. Lal, R. 2005. Forest Soils and Carbon Sequestration. Forest Ecology and Management, 220, 242–258. http://dx.doi.org/10.1016/j.foreco.2005.08.015
  • 31. Lawrence, D., Coe, M., Walker, W., et al. 2022. The Unseen Effects of Deforestation: Biophysical Effects on Climate. Front. For. Glob. Change, 5, 756115. https://doi.org/10.3389/ffgc.2022.756115
  • 32. Lee, X., Goulden, M.L., Hollinger, D.Y., et al. 2011. Observed increase in local cooling effect of deforestation at higher latitudes. Nature, 479, 384–387. https://doi.org/10.1038/nature10588
  • 33. Leiva, M.J., Pérez-Romero J.A., et al. 2018. The Effect of Simulated Damage byWeevils on Quercus Ilex Subsp. Ballota Acorns Germination, Seedling Growth and Tolerance to Experimentally Induced Drought. For. Ecol. Manag., 409, 740–748.
  • 34. Lepoutre, B. 1965. Régénération artificielle du chêne-liège et équilibre climacique de la subéraie en forêt de la Mamora. Ann. Rech. Forest. Rabat, 9, 1–86.
  • 35. Lepoutre, B. 1967. Excursion au Maroc. Description des régions traversées. Chapitre VII. La Mâmora. Les Cahiers de la Recherche Agronomique, 1(2), 279–295.
  • 36. Lohbeck, M., Rother, D.C., Jakovac, C.C. 2021. Editorial: Enhancing Natural Regeneration to Restore Landscapes. Front. For. Glob. Change, 4, 735457. https://doi.org/10.3389/ffgc.2021.735457
  • 37. Mariotti, B., Maltoni, A., Jacobs, D.F. 2015. Tree shelters affect shoot and root system growth and structure in Quercus robur during regeneration establishment. Eur. J. For. Res, 134, 641–652.
  • 38. Mayhead, G.J., Boothman, I.R. 1997. The effect of tree shelter height on the early growth of sessile oak (Quercus petraea (Matt.) Liebl.) Forestry, 70(2), 151–155. https://doi.org/10.1093/forestry/70.2.151
  • 39. McCreary, D.D., Costello, L.R., Tecklin, J., et al. 2002. The influence of tree shelters and irrigation on shoot and root growth of three California oak species. USDA For. Serv. Gen. Tech. Rep. PSW-GTR, 184, 387–395.
  • 40. McCreary, D.D., Tecklin, J. 2001. The effects of different sizes of tree shelters on blue oak (Quercus douglasii) growth. West J Appl For., 16(4), 153–158. https://doi.org/10.1093/wjaf/16.4.153
  • 41. McCreary, D.D., Tietje, W., Davy, J., et al. 2011. Tree shelters and weed control enhance growth and survival of natural blue oak seedlings. California Agriculture, 65, 192–196. https://doi.org/10.3733/ca.v065n04p192
  • 42. Mechergui, T., Hasnaoui, B., Pardos, M., et al. 2012. First-year effects of tree shelters and mulching on survival and growth of zeen oak (Quercus canariensis L.) seedlings planted in North-Western Tunisia. Rev. Ecol. (Terre et Vie), 67, 3–18.
  • 43. Mechergui, T., Pardos, M. 2017. Impacts of mulching and tree shelters on Cork oak (Quercus suber L.) seedling survival and growth after four growing seasons. Revue d’Ecologie, Terre et Vie, Société nationale de protection de la nature, 72(4), 410–424.
  • 44. Mechergui, T., Pardos, M., Boussaidi, N., et al. 2013. Development of cork oak (Quercus suber L.) seedlings in response to tree shelters and mulching in northwestern Tunisia. J For Res., 24(2), 193–204. https://doi.org/10.1007/s11676-013-0345-x
  • 45. Mechergui, T., Pardos, M., Jacobs, D.F. 2019. Influence of mulching and tree shelters on 4-year survival and growth of zeen oak (Quercus canariensis) seedlings. J For Res., 30(1), 129–141. https://doi.org/10.1007/s11676-018-0606-9
  • 46. Mezquida, E.T., Caputo, P., Acebes, P. 2021. Acorn Crop, Seed Size and Chemical Defenses Determine the Performance of Specialized Insect Predators and Reproductive Output in a Mediterranean Oak. Insects, 12(8), 721. https://doi.org/10.3390/insects12080721
  • 47. Oliet, J.A., Blasco, R., Valenzuela, P., et al. 2018. Should We Use Meshes or Solid Tube Shelters When Planting in Mediterranean Semiarid Environments? New For., 50, 267–282.
  • 48. Palma, A.C., Laurance, S.G.W. 2015. A review of the use of direct seeding and seedling plantings in restoration: what do we know and where should we go?. Appl Veg Sci, 18, 561–568. https://doi.org/10.1111/avsc.12173
  • 49. Ramos, S., Vázquez, F.M., Ruiz, T. 2013. Ecological implications of acorn size at the individual tree level in Quercus suber L. ISRN Botany 2013:1–6. Article ID 310828.
  • 50. Shono, K., Cadaweng, E.A., Durst, P.B. 2007. Application of assisted natural regeneration to restore degraded tropical forestlands. Restorat. Ecol., 15, 620–626. https://doi.org/10.1111/j.1526-100X.2007.00274.x
  • 51. Sweeney, B.W., Czapka, S.J., Carol, L., et al. 2007. How Planting Method,Weed Abatement, and Herbivory Affect Afforestation Success. South. J. Appl. For., 31, 85–92.
  • 52. Taylor, M., Haase, D.L., Rose, R.L. 2009. Fall planting and tree shelters for reforestation in the East Washington Cascades. West. J. Appl. For, 24, 173–179.
  • 53. Taylor, T.S., Loewenstein, E.F., Chappelka, A.H. 2006. Effect of animal browse protection and fertilizer application on the establishment of planted Nuttall oak seedlings. New Forests, 32, 133−143.
  • 54. Thyroff, E.C., Burney, O.T., Oliet, J.A., et al. 2022. Toward Identifying Alternatives to Fencing for Forest Restoration: Tube Shelters Outperform Mesh Shelters for Deer Browse Protection of Live Oak, Quercus virginiana. Land, 2022, 11, 966. https://doi.org/10.3390/ land11070966
  • 55. Tubex. n.d. Benefits of Tree Shelters: Tree shelters enhance tree growth and development. https://tubex.com/benefits-of-tree-shelters/Accessed/
  • 56. Tuley, G. 1985. The growth of young oak trees in shelters. Forestry, 58, 181–195.
  • 57. Woolery, P.O., Jacobs, D.F. 2014. Planting Stock Type and Seasonality of Simulated Browsing Affect Regeneration Establishment of Quercus rubra. Can. J. For. Res., 44, 732–739.
  • 58. Zhang, Z., Wang, Z., Chang, G., et al. 2016. Trade-off between seed defensive traits and impacts on interaction patterns between seeds and rodents in forest ecosystems. Plant Ecol., 217, 253–265
  • 59. Zine El Abidine, A., Bouderrah, M., Lamhamedi, M.S., et al. 2020. Choix des essences de reboisement pour la forêt de la Maâmora (Maroc) sur la base de la tolérance des plants juvéniles à la sécheresse, Physio-Géo, 15(1), 133–160.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3fa46c53-6a36-4d5d-acff-58c0d2888cdb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.