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Accelerated degradation analysis based on a random-effect Wiener 
process with one-order autoregressive errors

Przyspieszona analiza degradacji w oparciu o proces Wienera 
z efektem losowym z błędami autoregresyjnymi pierwszego rzędu

For highly reliable and long-life products, accelerated degradation test (ADT) is often an effective and attractive way to assess 
the reliability. To analyze the accelerated degradation data, it has been well recognized that it is necessary to incorporate three 
sources of variability including the temporal variability, the unit-to-unit variability and measurement errors into the ADT model. 
The temporal variability can be properly described by the Wiener process. However, the randomness of the initial degradation 
level, which is an important part of the unit-to-unit variability, has been often neglected. In addition, regarding the measurement 
errors, current ADT models often assumed them to follow a mutually independent normal distribution and ignored the autocor-
relation that may probably exist in them. These problems lead to a poor accuracy for reliability evaluation in some situation. 
Thus, a random-effect Wiener process-based ADT model considering one-order autoregressive (AR(1)) errors is proposed. Then 
closed-form expressions for the failure time distribution (FTD) is derived based on the concept of first hitting time (FHT). A sta-
tistical inference method is adopted to estimate unknown parameters. Finally, a comprehensive simulation study and a practical 
application are given to demonstrate the rationality and effectiveness of the proposed model.

Keywords:	 reliability evaluation, accelerated degradation modeling, Wiener process, unit-to-unit variability, 
measurement errors.

W przypadku wysoce niezawodnych produktów o długim cyklu życia, przyspieszone badanie degradacji (ADT) często stanowi 
skuteczny i atrakcyjny sposób oceny niezawodności. Jak wiadomo, analiza danych z przyspieszonej degradacji wymaga włączenia 
do modelu ADT trzech źródeł zmienności, w tym zmienności czasowej, zmienności między jednostkami i błędów pomiarowych. 
Zmienność czasową można odpowiednio opisać za pomocą procesu Wienera. Jednak losowość początkowego poziomu degra-
dacji, który stanowi ważną część zmienności między jednostkami, jest często w badaniach pomijana. Ponadto, w odniesieniu do 
błędów pomiaru, obecne modele ADT często zakładają, że mają one wzajemnie niezależne rozkłady normalne, ignorując możliwą 
autokorelację. Problemy te prowadzą w niektórych sytuacjach do niskiej trafności oceny niezawodności. W związku z powyższym, 
zaproponowano model ADT oparty na procesie Wienera z efektem losowym, w którym uwzględniono błędy autoregresyjne pierw-
szego rzędu (AR (1)). Następnie, w oparciu o pojęcie pierwszego czasu przejścia, wyprowadzono wyrażenia w postaci zamkniętej 
dla rozkładu czasu uszkodzenia (FTD). Do oszacowania nieznanych parametrów przyjęto metodę wnioskowania statystycznego. 
Na koniec przedstawiono kompleksowe studium symulacyjne i wskazano praktyczne zastosowanie modelu w celu wykazania jego 
racjonalności i skuteczności.

Słowa kluczowe:	 ocena niezawodności, przyspieszone modelowanie degradacji, proces Wienera, zmienność 
między jednostkami, błędy pomiaru.
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1. Introduction

With increasing requirements from customers, more and more 
products are requested to have long life and high reliability. For prod-
ucts with these features, degradation data has been recognized as a 
valuable life information source and has been commonly adopted in 
reliability assessment [1, 26]. To guarantee the analysis accuracy, it 
is necessary to construct a reasonable degradation model. In the lit-
erature, many real applications suggest that degradation of a batch 
of products is usually affected by three types of variability including 
temporal variability (also defined as time-correlated structure), unit-
to-unit variability and measurement errors. The temporal variability 
is referred to as the inherent variation of the degradation process over 
time. The unit-to-unit variability describes the heterogeneity among 
the degradation paths of multiple items. Measurement errors are usu-

ally created during the degradation investigation process due to im-
perfect measurements. For example, the imperfect measuring tool, the 
randomness of environmental factors and lower-skilled technicians 
may all result in imperfect measurements, especially when the data 
are obtained in an indirect way [19, 27, 28].

There is considerable interest on the part of the scientists and 
engineers in understanding and modeling the degradation process 
of products and components. Simultaneously considering the three 
types of variability, Peng and Tseng [19] proposed a general linear 
degradation model, Ye et al. [31] presented a well-adopted Wiener 
process degradation model and Li et al. [6] constructed a generalized 
nonlinear Wiener process-based degradation model. Meanwhile, Pan 
et al. [19] developed a reliability estimation approach based on EM 
algorithm for Wiener process degradation model by simultaneously 
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considering the variabilities. Moreover, degradation models adopted 
for the remaining useful life prediction that simultaneously consider-
ing the above three types of variability can be seen in [22, 23, 35].

In practical engineering, ADT has been recognized as an effective 
way to obtain degradation information quickly and efficiently within 
a reasonable time span and budget [31]. For accelerated degradation 
processes, temporal variability, unit-to-unit variability and meas-
urement errors have also been recognized as three main uncertainty 
sources. Therefore, it is necessary to incorporate the three types of 
variability simultaneously for reasonable ADT modeling. Since the 
temporal variability of a degradation process can be properly de-
scribed by a stochastic process via its the stochastic characteristics, 
stochastic process-based models including Wiener process, Gamma 
process and Inverse Gaussian Process have been in favor with many 
researchers in ADT analysis [11]. Among them, due to the attractive 
mathematical properties and physical interpretations, Wiener process 
and its various variants have been extensively developed and applied 
for accelerated degradation analysis of products [33-34]. Whitmore 
and Schenkelberg [30] adopted a Wiener process with one time scale 
transformation to model a constant stress ADT (CSADT).Liao and 
Tseng [10] provided an optimal step-stress ADT (SSADT) plan based 
on a Wiener process through a time transformation. Lim and Yum 
[11] developed an optimal ADT plan by assuming that the degradation 
characteristic follows a Wiener process.

Regarding unit-to-unit variability in ADT modeling, the degrada-
tion rate has been considered as a unit specific property. Then the drift 
coefficient (denoting the degradation rate) in Wiener process models 
is usually supposed to be random variable to describe the heterogenei-
ty among test specimens. Tang et al. [25] proposed a nonlinear Wiener 
process to model ADT where the variability of an individual specimen 
was considered by assuming the drift coefficient as a random vari-
able. Sun et al. [24] considered the individual variation by regarding 
the drift parameter as random in the Wiener process ADT model. Liu 
et al. [14] proposed a general Wiener process ADT model consider-
ing the unit-to-unit uncertainty. Meanwhile, measurement errors have 
been incorporated in Wiener process ADT modeling [4, 7].

According to the literature review, although a few Wiener proc-
ess models have considered three types of variability into the ADT 
modeling, multiple problems have to be settled to enhance the model 
reasonability and the analysis accuracy. According to the best of our 
knowledge, it is a standard assumption for Wiener process-based ADT 
models that all measurement error terms are mutually independent and 
follow a normal distribution with zero mean and equal variance in the 
current literature. In practice, however, it is an oversimplification to 
suppose measurement errors are mutually independent. Degradation 
measurements (comprising the true degradation and measurement er-
rors) are observed on a unit over time, and then it is reasonable to con-
sider the degradation observation sequence and its measurement error 
dataset as time series [3, 17]. It is well known that time series datasets 
usually exhibit autocorrelation because of modeling errors or cyclic 
changes in ambient conditions (e.g., temperature)[5, 13]. Therefore, 
autocorrelation may probably exist in measurement errors, and it may 
be nonnegligible in many practical situations. It is further worth notic-
ing that the autocorrelation may become stronger when the inspection 
time interval is relatively short. A Wiener process degradation model 
with AR(1) measurement errors for general degradation analysis was 
proposed in our previous work [9]. However, regarding accelerated 
degradation reliability analysis, the issue has not been reported in the 
literature. Thus, the first main objective of this paper is to extend the 
degradation model subject to autoregressive measurement errors in 
[9] to the case of accelerated degradation analysis.

On the other hand，in ADT modeling literature, the drift param-
eter has been usually supposed as a random variable to consider the 
unit-to-unit variability, while the initial degradation value has been 
always assumed or transformed as zero or a constant for most current 

Wiener process models [14, 25]. In real applications, however, the 
initial degradation level may probably not be a fixed value across all 
items, and may show unit-to-unit variabilities [4]. For example, the 
difference of the initial degradation level may be caused by the variant 
properties of material, the geometry differences of products, and so 
on. Therefore, it is necessary to incorporate unit-to-unit variabilities 
of both degradation rate and initial degradation level into the ADT 
modeling procedure to enhance its reasonability. That is the second 
objective of the current study.

In addition, it is well known that FHT of a standard Wiener pro-
cess follows an inverse Gaussian distribution, and this is very use-
ful for reliability analysis and maintenance decision-making [2]. For 
general degradation model and ADT model based on Wiener process, 
closed- form FTD expressions have been derived for situations when 
unit-to-unit variability regarding degradation rate is considered in the 
literature. As previously discussed, it is necessary for a reasonable 
ADT model to consider the unit specific variability caused by initial 
degradation level simultaneously. Considering the degradation mod-
els subject to measurement errors, most studies assume that a product 
is considered as been failed when its true degradation level first hits a 
predefined critical level [19, 35]. Therefore, the current study derives 
the closed-form ADT expressions along this line.

The remainder of the paper is organized as follows. Section 2 in-
troduces an improved Wiener process ADT model which can consider 
the autoregressive measurement errors and the unit specific properties 
of both degradation rate and initial degradation level. The lifetime 
distribution is derived based on the FHT concept. Section 3 discusses 
MLEs for model parameters and an initial guesses method for optimi-
zation algorithm is given. In Section 4, the efficiency and reasonabil-
ity of the established methodology is validated via a comprehensive 
Monte Carlo simulation study. In Section 5, the proposed approach 
is illustrated by a real application involving an electronic transistor 
ADT and comparative results are given. A summary and conclusion 
is given in Section 6. 

2.  ADT modeling 

According to stress loading modes, there are mainly three 
ADT types including CSADT, SSADT and progressive stress ADT 
(PSADT). In real applications, comparing with SSADT and PSADT, 
CSADT has been recognized as the most commonly adopted type be-
cause of its simplicity and conveniences. Therefore, CSADT is fo-
cused in the current study. 

2.1.	 Model formulation

A random-effect Wiener process-based ADT model considering 
autoregressive errors can be given by:
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where ( )Y t  and ( )X t  respectively denote the degradation inspection 

and the true performance degradation value at time t ; ( )0 0X X=  
is the true initial degradation level; ( ),Sυ β  is the drift coefficient; 
S  is the stress, and β  is the unknown parameter vector in ( ),Sυ β

; ( ),tΛ θ  called transformed time scale is a positive non-decreasing 
function and θ  is the unknown parameter vector in ( ),tΛ θ ; For 
convenience, let ( ),tΛ = Λ θ ; ( )B ⋅  is a standard Wiener process and 
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0σ >  denotes the diffusion coefficient; ( )tε  is the measurement er-
ror term at time t ; p  denotes the order of the autoregressive process; 

kϕ  is the autocorrelation coefficient; e Ni
iid

e~ ,0 2σ( )  is the normally 
distributed and mutually independent. The improved ADT model ex-
pressed by Eq.(1) shows the following main properties:

The true performance degradation 1.	 ( )X t  under stress level S  

is assumed to be characterized by a Wiener process ( )( ),B tΛ θ  
and a drift coefficient ( ),Sυ β  along with the diffusion coef-

ficient σ  and the true initial degradation level 0X . ( ),Sυ β  
is adopted to describe the accelerated relationship between the 
degradation rate and the stress S .

The accelerated model 2.	 ( ),Sυ β  can be constructed as 

( ) ( )0 1, = ,S Sυ β λ ββ , where ( )0 1,β β=β  is unknown pa-
rameter vector; ( )1,Sλ β  is a function that depends on stress 
S  and can be obtained based on the acceleration relationship. 
Currently, commonly adopted acceleration models include the 
power rule model, Arrhenius model and Eyring model. For 
example, when Arrhenius model is considered as the accelera-
tion model, the acceleration relationship can be supposed as 
( ) ( )1 1, =expS Sλ β β− ; While for the power rule model, one 

has ( ) 11, =SS βλ β . In ADT analysis, to analyze the reliability 
at a use condition, the above accelerated models are usually 
utilized to describe the relation between the degradation rate 
and the stress [4, 7, 10-12, 14, 25].
The measurement error term 3.	 ( )tε  in the accelerated degra-
dation model is considered as a p -order autoregressive time 

series process ( ) ( )
1

p

i k i k i
k

t t eε ϕ ε −
=

= +∑ , where 1kϕ < ; i.e., 

AR( p ). In practical engineering, it has been recognized that 
for longitudinal data or degradation data, an one-order autore-
gressive model can usually effectively describe the autocorre-
lation in the within-individual measurement errors [3, 9, 13]. 
Meanwhile, for the ADT model with p -order autoregressive 
error, the complex model increases the difficulties of the solv-
ing process and it is difficult to acquire the estimation of the 
unknown parameters. Thus, in this paper, the situation that the 
measurement error term ( )tε  is a one-order autoregressive 
time series process is focused, that is ( ) ( )1i i it t eε ϕε −= + .
To consider the unit specific variant properties cause by the 4.	
product-to-product differences, both the parameter 0β  in the 
drift coefficient ( ),Sυ β  and the initial degradation level 0X  
are assumed to be normally distributed random variables; i.e. 
X N0 0 0

2~ ,µ σ( ) , β µ σ0
2~ ,N b b( ) . Moreover, 0X , 0β , 

( )( , )B tΛ θ  and ( )tε  are assumed to be mutually independent 
of each other.

As described above, the proposed ADT model in Eq. (1) can de-
pict the uncertainties from the temporal variability, the unit-to-unit 
variability ( 0 0σ ≠  or 0bσ ≠ ) and measurement errors ( 0eσ ≠ ) 
incorporated in accelerated degradation processes, and is applicable 
for linear and nonlinear degradation processes. In addition, the pro-
posed ADT model can cover several commonly Wiener process-based 
ADT models as its limiting cases, for example, if 0 0σ = , 0eσ =  and 

0kϕ =  , 1,2, ,k p=  , the proposed ADT model can be simplified to 
the existing widely used Wiener process-based ADT model [24, 25].

2.2.	 Derivation of lifetime distribution

To assess the product reliability at a use condition, it is necessary 
to derive FTD based on the proposed CSADT model. Without loss of 
generality, we first assume the degradation to be an increasing pro-
cedure over time, and a product is deemed to be failed when its true 
degradation first exceeds a predefined failure threshold. As discussed 
above, in some cases, it is necessary to incorporate the randomness of 
the initial degradation level 0X  into the ADT modeling procedure. 

To derive the lifetime distribution, first let *
fD  denote the failure 

threshold when the initial true degradation level 0X  is considered as 
0; i.e., 0 0X = . According to the FHT concept, it is natural to define 
life T  based on the true degradation path ( )X t  as:

	 T t X t D XX f|
*inf : |

0 0 0 0= = ( ) ≥ ={ } 	 (2)

In this situation, life T  follows an inverse Gaussian distribution 
under the concept of FHT for a Wiener process according to the lit-
erature [2]. When the initial degradation level and the drift coefficient 

are supposed as 0 0X =  and υ µ συ υS N, ~ ,ββ( ) ( )2 , the probability 
distribution function (PDF) and the cumulative distribution function 
(CDF) of life T  for the Wiener process given in Eq. (1) can be ex-
pressed as [25]:
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where ( )Φ ⋅  is the distribution function of a standard normal dis-
tribution. For the proposed CSADT model, ( )1,b Sυµ µ λ β=  and 

( )1,b Sυσ σ λ β= .
Then, further considering the randomness of the initial deg-

radation level 0X , let fD  denote the failure threshold, life T  re-

garding the true degradation path ( )X t  can be defined as:

	
T t X t D X Df f= ( ) ≥ ≤{ }inf : | 0 	 (5)

where the failure threshold *
0f fD X D= + . Then *

0f fD D X= −  
can be considered as a random variable with a normal distribution 
D N Df f

* ~ ,−( )µ σ0 0
2 . To this end, a proposition, which can signifi-

cantly simplify the CDF and PDF derivation procedure, is given as 
follows:

Proposition 1: Let X N~ ,µ σ 2( )  and a , b , c , d ∈R , then 
the following constructions hold:

	 E a bX a b bX Φ Φ+( )  = +( ) +( )µ σ1 2 2 	 (6)
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The proof is given in the Appendix A. Then based on Proposi-
tion 1, Eq. (6) and Eq. (7), CDF and PDF of life T  for the proposed 
model can be obtained via the total probability law. It is shown in the 
following Proposition 2.

Proposition 2: When the initial degradation level is considered as 
a normal random variable X N0 0 0

2~ ,µ σ( ) , PDF and the CDF of life 
T  for the proposed model can be expressed as:
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The proof is given in the Appendix B. Then, the mean time to 
failure (MTTF) MTTFt  can be approximately obtained by:

	

01 f
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D
t
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µ

− − 
= Λ  

  	 (10)

3. Parameter estimation

In a CSADT, let 0S  be a use stress level and 1 2 , , LS S S< < <  
denote L  higher stress levels. Suppose lm  units are tested under 
stress level lS , and the corresponding performance degradation of 
the thi  unit is measured at lin  test time points 1 2 , ,

lili li lint t t< < < , 
1,2, ,l L=  , 1,2, , li m= 

.

3.1.	 MLE for unknown parameters

For simplicity, let ( )lij lijy Y t=  denote the degradation in-
spection for unit i  at time lijt  under stress level lS , and suppose 

( )lij lijtΛ = Λ  and ( )1,l lSλ λ β= , 1,2, ,l L= 

, 1,2, , li m= 

, 

1,2, , lij n=  . Meanwhile, further define ( )'1 2, , ,
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( )1 2, , , L= y y y y . Then, liy  can be concluded to follow a mul-
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Moreover, to facilitate the estimation and inference, the 

parameters are re-parameterize as 2 2 2
0b bσ σ σ= , 2 2 2
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2

0 0 0γ γ σ=  and 2
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is further defined as a vector involving all unknown parameters in the 
proposed model. Then the log-likelihood function (Log- LF) of Θ  
can be expressed as:
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Taking the first derivative of ( ) Θ y  in Eq. (11) with respective 

to 0µ , bµ  and 2
0σ , one can obtain:

	 ( ) ( )' 1
02

0 1 10

1 lmL
li li li li b l li

l i
µ µ λ

µ σ
−

= =

∂
= − −

∂
∑∑





Θ
1 Σ 1 Λ

y
y 	 (12)

	 ( ) ( )' 1
02

1 10

1 lmL
l li li li li b l li

b l i
λ µ µ λ

µ σ
−

= =

∂
= − −

∂
∑∑





Θ
Λ Σ 1 Λ

y
y 	 (13)

( ) ( ) ( )' 1
0 02 2 4

1 10 0 0

1
2 2

lmL
li li b l li li li li b l li

l i

N µ µ λ µ µ λ
σ σ σ

−

= =

∂
= − + − − − −

∂
∑∑





Θ
1 Λ Σ 1 Λ

y
y y

 
(14)

Then, by equating Eq. (12), Eq. (13) and Eq. (14) to zero respec-

tively, the MLE of 0µ , bµ  and 2
0σ  can be obtained as:

	 ( ) ( )0 3 2 2 3 1 2 2 1ˆ A B A B A B A Bµ = − − 	 (15)

	 ( ) ( )1 3 3 1 1 2 2 1ˆb A B A B A B A Bµ = − − 	 (16)

( ) ( )'2 1
0 0 0

1 1

1ˆ ˆ ˆ ˆ ˆ
lmL

li li b l li li li li b l li
l iN

σ µ µ λ µ µ λ−

= =
= − − − −∑∑ 1 Λ Σ 1 Λy y  (17)
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where ' 1
1

1 1

lmL
li li li

l i
A −

= =
= ∑∑ 1 Σ 1 , 

' 1
2

1 1

lmL
l li li li

l i
A λ −

= =
= ∑∑ 1 Σ Λ , 

' 1
3

1 1

lmL
li li li

l i
A −

= =
= ∑∑ 1 Σ y , ' 1

1
1 1

lmL
l li li li

l i
B λ −

= =
= ∑∑ Λ Σ 1 , 2 ' 1

2
1 1

lmL
l li li li

l i
B λ −

= =
= ∑∑ Λ Σ Λ  

and ' 1
3

1 1

lmL
l li li li

l i
B λ −

= =
= ∑∑ Λ Σ y .

Next, substituting Eq. (16) and Eq. (17) into Eq. (11), a profile log-

likelihood function of unknown parameter ( )2 2
1 0, , , , ,bσ β σ γ ϕ=  θΘ  

can be obtained as:

	 ( ) 2
0

1 1

1ˆln ln
2 2

lmL
li

l i

NC σ
= =

= − − ∑∑ 

 Θ Σy 	 (18)

where C  is a constant. Based on a multiple-dimensional search 
optimization algorithm, MLE ( )2 2

1 0
ˆ ˆˆ ˆˆ ˆ ˆ, , , , ,bσ β σ γ ϕ=  θΘ  of un-

known parameters can be obtained by maximizing the profile 

Log-LF. Then MLE of 0µ , bµ  and 2
0σ  can be calculated by sub-

stituting ( )2 2
1 0

ˆ ˆˆ ˆˆ ˆ ˆ, , , , ,bσ β σ γ ϕ=  θΘ  into Eq. (16) and Eq. (17). The 

other unknown parameters can further be determined via 2 2 2
0

ˆˆ ˆb bσ σ σ= 

, 2 2 2
0

ˆˆ ˆσ σ σ=   , 2
0 0 0

ˆˆ ˆγ σ γ= 

 and ( )2 2
0ˆ ˆˆ 1eσ γ ϕ= − .

3.2.	 Initial guesses

When a multiple-dimensional search optimization algorithm is 
applied to numerically maximize the log-likelihood function, a rea-
sonable initial guess is necessary for numerical calculation. Thus, a 
simple method is given to obtain an educated guess for the initial in-
terval. The detailed procedure is as follows:

Let 1.	 0liX  and liυ  denote the initial degradation level and 
the drift coefficient parameter ( ),Sυ β  for the thi  unit un-
der stress level lS  respectively, 1,2, ,l L= 

, 1,2, , li m=   . 
Based on the least square method, rough estimates of 

0 1 0 2 0, , ,
ll l lmX X X , 1 2, , ,

ll l lmυ υ υ

 and θ  can be obtained 
by minimizing the mean squared error (MSE):

	 ( ) ( )'
1 0 0

1 1
MSE

lmL
li li li li li li li li li li

l i
X Xυ υ

= =
= − − − −∑∑ 1 Λ 1 Λy y  (19)

The rough estimates of 2.	 0µ  and 2
0σ  can be calculated by fit-

ting the estimations 0 1 0 2 0, , ,
ll l lmX X X , 1,2, ,l L= 

.
Based on the least square method, the rough estimates of 3.	

0 1 0 2 0, , ,
ll l lmβ β β , 1,2, ,l L=   and 1β  can be obtained by 

minimizing the following mean squared error (MSE):

	 ( )( ) ( )( )'
2 0 1 0 1

1 1
MSE , ,

lmL
li li l li li l

l i
S Sβ β λ β β β λ β

= =
= − −∑∑  (20)

The rough estimates of 4.	 bµ  and 2
bσ  can be calculated by fit-

ting the estimations 0 1 0 2 0, , ,
ll l lmβ β β , 1,2, ,l L= 

.

Based on the estimations of 5.	 0µ , 2
0σ , bµ , 2

bσ , 1β  and θ  , 

the rough estimates of 2σ , σe
2  and φ can be obtained by max-

imizing the profile log-likelihood function in Eq. (11).

Therefore, the starting intervals of the unknown parameters for 
maximizing the log likelihood function via a multiple-dimensional 
search optimization algorithm are determined.

4. Simulation study

In this section, to test the efficiency of the proposed method, a 
comprehensive simulation study has been conducted considering 
CSADT. For comparison, let M0 denote the proposed method. To 
demonstrate the necessity of considering autoregressive measurement 
errors in the accelerated degradation modeling procedure, a Wiener 
process-based ADT model M1, as a special case of model M0 by set-
ting φ = 0, is considered as a reference method. Meanwhile, another 
reference model M2 that setting σ0 = 0 in the model M0 is also adopted 
to show the benefits of incorporating the random effects of the initial 
degradation level. Therefore, both the model comparison and sensitiv-
ity analysis of the standard deviation σ0 = 0 of initial degradation and 
the autocorrelation coefficient φ are conducted to test the efficiency 
and necessary of the proposed method.

4.1.	 Model Comparison

Without loss of generality, temperature is considered as the ac-
celerated stress and the transformed time scale function is defined as 

tθΛ = . The normal stress level is 0S =303.5 K (30 °C) and three 
accelerated levels are supposed to be 1S  =333.5 K (60 °C), 2S = 
343.5 K (70 °C) and 3S =353.5 K (80 °C). And an Arrhenius model 
( ) { }0 1, expS Sυ β β=β  is adopted to describe the accelerated re-

lationship. The parameters in simulation model are preset as 0µ =3, 

0σ =0.9, bµ =7, bσ =0.7, 1β =1200, θ =1.5, σ =0.3, eσ =0.5 and 
 ϕ =0.8. A failure threshold value is predefined as fD = 12. For con-
venience, suppose m  units are tested under each stress level and all 
items are inspected at n  time points with t i= , 1,2, ,i n=  .

In order to examine the influence of the sample size on the ana-
lytical precision, different combinations of ( ),m n , which are chosen 
to be (5, 10), (10, 10), and (20, 10) are considered for the simulation 
study sequentially. For each combination of ( ),m n , the mean abso-
lute relative errors (MREs) and the mean square errors (MSEs) of the 
medium life 0.5t  and the FTD percentile  are calculated by Eq. (21) 
and Eq. (22) based on  Monte Carlo replications.

	 ( )2
1

1 ˆ
K

pk p
k

MSE t t
K =

= −∑ 	 (21)

	
1

ˆ1 K pk p

pk

t t
MRE

K t=

−
= ∑ 	 (22)

where K  is the number of Monte Carlo replications, pt  denotes the 
true 100 thp  FTD  percentile value and ˆpkt  is the corresponding es-
timated result under the thk  simulation, 1,2, ,k K=  . Comparative 
results are given in Table 1 and Table 2 based on =5000K  Monte 
Carlo replications.

From Table 1 and Table 2, it can be observed that for each combi-
nations of ( ),m n , MSEs and MREs of 0.5t  and 0.1t  based on the pro-
posed model M0 are smaller than that from reference models M1 and 
M2. When sample size is small, MSEs and MREs from the proposed 
model M0 are significantly lower than the results given by reference 
models M1 and M2. Meanwhile, when the sample size increases, al-

though MSEs and MREs of 0.5t  and 0.1t  based on reference models 
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M1 and M2 becomes closer to those of the constructed model M0, the 
proposed model M0 still can yield smaller MSEs and MREs. In addi-
tion, one can see that MSEs and MREs of 0.5t  are larger than those 
of 0.1t . This is because that the true value 0.1t  is smaller comparing 
with the true value of 0.5t , which will consequently result in a smaller 
error.

To further illustrate the efficiency of model M0, the log-likelihood 
function value (Log-LF) and the corresponding Akaike information 
criterion (AIC) value are calculated to compare the modeling reason-

ableness for each combination of ( ),m n , where AIC is defined as:

	 ( ){ }2 max log 2AIC likelihood q= − ×   +  	 (23)

where q  is the number of the unknown parameters in the adopted 
accelerated degradation model.

Table 3 lists the average results of Log-LF value and AIC value 
under different combinations of ( ),m n  based on =5000K  Monte 
Carlo replications. It is obvious that in both terms of Log-LF and AIC, 
the proposed model M0 gives a better fitting and modeling property. 
Therefore, although the constructed model M0 involves one more pa-
rameter than reference models M1 and M2, it is necessary and worthy 
to construct the complicated analysis procedure for reasonable and 
accurate analysis.

4.2.	 Sensitivity Analysis

In this section, to furthermore test the necessary of considering 
the autocorrelation among measurement errors and the randomness of 
initial degradation level into the unit-to-unit variability, the sensitivity 
of reliability estimation is analyzed by setting different values of the 
autocorrelation coefficient ϕ  and the standard deviation 0σ  of initial 
degradation level for the simulation example.

To this end, we first set the autocorrelation coefficient ϕ =0.1 
(0.1) 0.9, and keep all other parameters unchanged. After that, the 
absolute error and the relative error of reliability evaluation results at 
normal stress levels are calculated in such a case by comparing model 
M0 with M1. Then, we set the standard deviation 0σ =0.25 (0.25) 2 
and the errors are calculated by comparing model M0 with M2. If the 
autocorrelation coefficient ϕ  and the standard deviation 0σ  are sen-
sitivity, the errors of reliability evaluation results at normal stress lev-
els should increase with the values of ϕ  and 0σ . 

Herein, we repeated the simulation procedure of CSADT data for 

sN = 100 times under the situation in Section 4.1. Then, the mean 
absolute error (MAE) and the mean absolute relative error (MARE) 
of reliability evaluation results for the autocorrelation coefficient ϕ  
and the standard deviation 0σ  can be given by:

( ) ( )

( ) ( )
( )

0
1 1

0

1 1 0

1 1MAE M M
1,2

M M1 1MARE
M

s

s

N n
k k

i T j T j i
s k j

k kN n T j T j i
i k

s k j T j

F t F t
N n

i
F t F t

N n F t

= =

= =


= −
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

−
=



∑ ∑

∑ ∑

  (24)

where ( )Mk
T j iF t  is the CDF at time jt  under the normal stress level 

for the k th simulation under model Mi , 0,1,2i = , 1,2, , sk N= 

.

The results of the sensitivity analysis of autocorrelation coef-
ficient ϕ  and standard deviation 0σ  are shown in Fig.1 and Fig.2 
respectively. From Fig.1 and Fig.2, it can be observed that MAE and 
MARE of reliability evaluation results will increase with the autocor-
relation coefficient ϕ  and the standard deviation 0σ . Thus, it is clear 
that the effect of ignoring the autocorrelation among measurement 
errors and the randomness of initial degradation level on the reliability 

Table 2.	 MSEs and MREs of t0.1 from different degradation models

Model (5,10) (10,10) (20,10)
MSE MRE MSE MRE MSE MRE

M0 1.4047 0.0737 0.6919 0.0576 0.4719 0.0485
M1 4.1695 0.1250 2.9078 0.1205 1.7061 0.0939
M2 7.1508 0.1607 3.6679 0.1272 1.6009 0.0867

Table 1. 	 MSEs and MREs of  t0.5  from different degradation models

Model (5,10) (10,10) (20,10)
MSE MRE MSE MRE MSE MRE

M0 2.6371 0.0785 1.6664 0.0609 1.2013 0.0547
M1 24.8524 0.1960 14.6416 0.1726 6.6128 0.1209
M2 17.5616 0.1894 13.1900 0.1637 5.2263 0.1076

Table 3.	 Comparison of Log₋LF and AIC results

Model (5,10) (10,10) (20,10)
Log₋LF AIC Log₋LF AIC Log₋LF AIC

M0 ₋166.14 350.29 ₋350.26 718.52 ₋701.94 1421.88
M1 ₋171.56 359.11 ₋357.43 730.85 ₋715.94 1447.89
M2 ₋169.91 355.82 ₋355.76 727.53 ₋712.75 1441.50
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analysis is not critical under a small autocorrelation coefficient and 
the standard deviation 0σ  of initial degradation level situation. How-
ever, when the autocorrelation coefficient the standard deviation 0σ  
are large, the effect is quite serious.

From the above analysis and comparison incorporating the refer-
ence models M1 and M2, one can conclude that it is necessary to con-
sider the autoregressive measurement errors and the random effects of 
the initial degradation level into the Wiener process ADT modeling 
procedure, especially for limited sample size situations. In addition, if 
degradation model is mis-specified, unreliable results may probably 
be derived.

5. Illustrative example

In this section, a real application regarding a CSADT of electronic 
transistors is involved to further illustrate the necessary and validity 
of the proposed model M0 for accelerated degradation analysis. An 
electronic transistor degrades over time and finally fails when its gain, 
a key performance of transistor, falls to a preset threshold level that 
makes it nonfunctional in the device where it is placed. To assess the 
electronic transistor reliability under a use stress level 0S =25oC, a 
CSADT was conducted under two higher stress levels 1S =50oC and 

2S =75oC. For each accelerated stress level, 4 electronic transistors 
are randomly selected for the degradation test. The original acceler-
ated degradation data are given in [15], and is shown in Fig.3. The 
failure threshold is preset as fD =0.15. Meanwhile, models M1 and 
M2 are also considered as reference for comparison.

According to [1, 18], Arrhenius acceleration model is a most 
common model and  has been widely applied when the accelerated 
variable is temperature. Thus, without loss of generality, Arrhenius 
acceleration model is utilized to describe the relationship between 
the degradation rate of electronic transistors and the stress; i.e., 
( ) ( )0 1, = ,S Sυ β λ ββ  and ( ) ( )1 1, expS Sλ β β= − . In addition, em-

pirical studies have shown that ( ),t tθΛ =θ  can be considered as a 
reasonable transformed time scale form [9, 15]. Consequently, this 
form is adopted in the current study.

To test the fitting goodness, models M0, M1 and M2 are adopted to 
fit the accelerated degradation dataset. Unknown parameters of differ-
ent models are estimated according to the inference procedure given 
in Section 4. Meanwhile, both Log-LF and AIC values are calculated. 
Results are summarized in Table 4. From Table 4, on can see that 
compared with models M1 and M2, model M0 displays a best fitting 
with a largest Log-LF value and a smallest AIC value. 

The one-order autocorrelation coefficient values ϕ  estimated by 
models M0 and M2 are larger than or equal to 0.9, which indicates that 
the autocorrelation among measurement errors is non-ignorable for 
this practical problem. Additionally, it is obvious that the estimated 
value of 0σ  in models M0 and M1 are also relatively larger, and one 
can conclude that the random effect of the initial degradation level is 
necessary to be considered in ADT modeling.

Based on the results in Table 4, estimated mean degradation paths 
for the above three models are obtained and shown in Fig.4. From Fig. 
4, it shows that for both stress levels, the estimated mean degradation 
paths based on the three models are all in conjunction with the sample 
average. 

Fig. 5. Comparison of normal probability plots

For further illustration, the normal probability plot is adopted to 
assess the fitting goodness of models M0, M1 and M2. Fig.5 gives the 
normal probability plots of the three adopted models. It is well known 
that if a normal probability plot approximates a straight line, a good 
fitting can be concluded. Otherwise, more proper degradation models 
should be considered when a poor fitting is derived. From Fig.5, it is 

Fig. 1. Sensitivity analysis of autocorrelation coefficient ϕ

Fig. 2. Sensitivity analysis of standard deviation 0σ

Fig. 3. Accelerated degradation data of electronic transistors

Fig. 4. Estimated mean degradation path based on three models
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clear that the proposed model M0 shows a best fitting compared with 
the reference models.

In addition, the medium life 0.5t  and the 10th  FTD percentile 
0.1t  for the three models are given in Table 5. It can be observed 

that results of 0.5t  and 0.1t  by reference models M1 and M2 are sig-
nificantly larger than those from the constructed model M0. It is well 
known that q-percentile life is commonly considered as an important 
evidence for making effective maintenance schedule. In practical en-
gineering, a conservative q-percentile life estimation may lead to hys-
teretic maintenance and increase the failure risk at an early time.

From the above analysis, one can conclude that it is necessary to 
consider the autocorrelation among measurement errors for reason-
able results when modeling accelerated degradation processes. Mean-
while, it is also necessary to incorporate the random effect of the ini-
tial degradation level into Wiener process ADT modeling. Although 
the proposed method may illustrate a more complicated modeling 
procedure because of the one more parameter, reasonable and reliable 
results can be governed.

6. Conclusions

Motivated by real applications, this paper proposed a Wiener 
process accelerated degradation model, which simultaneously consid-
ers the temporal variability, the unit-to-unit variability, and measure-
ment errors. In the ADT modeling process, a one-order autoregressive 
model is utilized to reasonably describe the autocorrelation that may 
exist among measurement errors. Moreover, the random effects of 
both the initial degradation level and the degradation rate are incor-
porated regarding unit specific properties. Then, explicit form of life-
time distribution is derived based on the FHT concept, and a statistical 
inference method is given for unknown parameter estimation. 

A comprehensive simulation study has demonstrated the necessity 
and efficiency of the proposed model with respect to CSADT analysis 
via an enhanced accuracy. Finally, a real application about CSADT of 
electronic transistors has verified the effectiveness and superiority of 
the constructed method comparing with the commonly used Wiener 
process models.

In this paper, accelerated degradation analysis for CSADT in fo-
cused. However, in practical engineering, SSADT is another effective 
way to evaluate the reliability of highly reliable products. Thus, the 
future research will focus on SSADT modeling. In addition, it may be 
of interest to predict the remaining useful life based on the proposed 
model. Meawhile, the failure threshold of many degradation process 
may be unknown and has uncertainty, which can be worth studying. 
We will work on these problems and hope to have useful findings.
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Appendix A

Proof of Proposition 1:

Let ( )~ 0,1Z N  and ,γ κ ∈R , one can derive [22]:

	 ( ) ( )21ZE Zγ κ γ κΦ +  = Φ +  	 (25)

Then, let = +X Zµ σ . It can further be obtained that:

( ) ( ) ( )( )2 21X ZE a bX E a b b Z a b bµ σ µ σΦ +  = Φ + +  = Φ + +     
(26)

( ) ( ) ( ) ( )2 21exp expX
XE aX bX c dX aX bX c dX dXµφ

σ σ
−  + Φ + = + Φ +      

∫R

( ) ( ) ( ) ( )2 2exp exp 2a b a b Z b Z c d d Z Z dZµ µ µ σ σ µ σ φ =  +  + + Φ + +   ∫R

( )
( )

( )
( )

2 2 2

2 22 2

2 21 exp
2 1 2 1 21 2 1 2

Z
a b a a b d dE c d Z

b bb b

µ µ σ µ σ σµ
σ σσ σ

    + + +   = Φ + + +     − −− −       
(27)

According to Eq. (26), we can derive:

( )
( )

2

2 2

2

1 2 1 2
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a b d dE c d Z
b b

µ σ σµ
σ σ
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c d ad bc

b b d
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σ σ σ

 
+ + − 

Φ 
 − − +
 

(28)

Thus:

( ) ( )2expXE aX bX c dX + Φ +   	  

		

( )
( )

2 2

22

21 exp
2 1 21 2

a b a

bb

µ µ σ

σσ

 + + =  −−   

Table 4.	 Comparison fitting goodness for different degradation models

Model
Estimated parameters Log

-LF AIC
μ0 σ0 μb /104 σb β1 θ σ σe φ

M0 0.0077 0.0012 7.6756 0.0117 4.86 0.7707 0.0097 0.0002 0.9995 566.7 -1115.4

M1 0.0074 0.0028 6.5938 0.0276 4.79 0.7129 0.0087 0.0014 --- 563.4 -1110.8

M2 0.0079 --- 24.4991 0.0021 5.25 0.7592 0.0082 0.0018 0.9000 564.3 -1112.5

Table 5.	 Comparative results of different predicting life

Model
Estimated percentiles of the FTD

t0.5/103h t0.1/103h

M0 55.91 32.62

M1 70.97 43.00

M2 73.02 44.40
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( )

( )( )
2

2 2 2 2

2

1 2 1 2

c d ad bc

b b d

µ σ

σ σ σ

 
+ + − 

×Φ 
 − − +
 

	 (29)

This completes the proof of Proposition 1.

Appendix B

Proof of Proposition2:

Considering the randomness of the initial degradation level 0X  , 

the failure threshold *
0f fD D X= −  can be considered as a random 

variable with the normal distribution; i.e., ( )* 2
0 0~ ,f fD N D µ σ− . 

Thus, according to Eq. (4) and the law of total probability, CDF of life 

T  for the proposed model can be expressed as:

( )
2 2 2f

f
T D

D
F t E υ
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σ σ

  Λ −  = Φ   Λ + Λ  
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2 4 2 2 2 2

22 2
exp

f
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υ

σ µ σ σµ σ
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    Λ + Λ +   + + Φ −      Λ + Λ    
(30)

For the first term in Eq. (30), let:

	 2 2 2
a υ

υ
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σ σ

Λ
=

Λ + Λ
,  2 2 2

1b
υσ σ

= −
Λ + Λ

	 (31)

Meanwhile, for the second term in Eq. (30), let:

2
2a υµ
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= , 
2
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σ µ
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Λ

Λ Λ
    (32)

Then, according to Proposition 1, CDF of life T  can be derived for 
the proposed model. Furthermore, PDF of life can be accordingly ob-
tained by taking the derivative of CDF with respect to t .

This completes the proof of Proposition 2.
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