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Abstract.We consider a von Foerster-type equation describing the dynamics of a population
with the production of offsprings given by the renewal condition. We construct a finite
difference scheme for this problem and give sufficient conditions for its stability with respect
to l1 and l∞ norms.
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1. INTRODUCTION

Enhanced or generalized von Foerster-McKendrick models (originated in [5]) describe
populations with some structure given by age [6], size [1] or the maturity of individuals
[7]. In the literature there are discrete models of that type with finite [9] or infinite
matrices [15].

We consider a population with some structure given by its members size or the
maturity level and with the birth process expressed by a renewal condition. An el-
ementary outline of such equations, together with their biological interpretation, is
provided in [14], see also [2]. In [1] there is a system of equations describing subpop-
ulations existing in a common niche and competing for the same resources with the
closed reproduction (members of the same subpopulation) or the open reproduction
(members of different subpopulations).

The existence of solutions for generalized von Foerster equations with renewal
conditions and with the functional dependence is proved in [13], which continues
the sequence of results [3, 4] and [10, 12], focused on integral fixed-point equations,
generated by differential-functional problems. As a main tool in the existence theory
there are constructed integral fixed-point equations and functional spaces, invariant
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with respect to these equations. Numerical methods for PDE’s are based on similar
discrete equations and suitable functional spaces. Having in mind L1 ∩L∞-dynamics
of the continuous problem, we keep our discrete constructions in l1 ∩ l∞-spaces.

1.1. FORMULATION OF THE DIFFERENTIAL PROBLEM.

Let a > 0 and denote E = [0, a] × R+, Ω0 = E × R+, Ω = E × R+ × R+, where
R+ = [0,+∞). Suppose that

λ : Ω→ R, c : Ω0 → R+.

Consider the differential equation

∂u

∂t
+ c (t, x, z(t))

∂u

∂x
= u(t, x)λ (t, x, u(t, x), z(t)) , (1.1)

where

z(t) :=

+∞∫
0

u(t, y) dy, t ∈ [0, a], (1.2)

with the initial condition
u(t, x) = v(x), x ∈ R+ (1.3)

and with the renewal condition

u(t, 0) =

+∞∫
0

k(t, y)u(t, y) dy. (1.4)

The well posedness of problem (1.1)–(1.4) requires the following consistency condition

u(0, 0) =

+∞∫
0

k(0, y)u(0, y) dy, (1.5)

which is valid throughout the paper.
Problem (1.1)–(1.4) is nonlocal because there are two nonlocal terms z(t) =

∫
udx

and u(t, 0) =
∫
k u dx, see (1.2) and (1.4). In [13] one can find additional sources

of nonlocal (causal) dependence zt and u(t,x), but renewal was replaced there by
the usual boundary condition. Since the numerical analysis of the highly nonlocal
differential problem is very technical, we simplify the PDE presented in [13], namely:
functions describing growth and mortality rates have classical arguments for quantities
representing the population density u and the total number z of its members, but
we deal with the most demanding nonlocal term, i.e. renewal. The present paper
extends our previous results concerning finite difference approximations, see [11], to
the problem with renewal.
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The terms z(t) and u(t, 0) are defined by some integrals over R+, which causes
the main difficulty in a stable discretization of the differential problem. Introducing a
new class of initial functions we make sure that the quadratures approximating these
quantities are well defined. Since the differential-functional problem considered here
has a concrete biological interpretation, we prove nonnegativity of discrete approxi-
mations of its solutions. Applying discrete comparison functions, we demonstrate that
solutions of our scheme are bounded in l∞ and l1 norms. Stability criteria for a finite
difference scheme are also derived by means of discrete comparison functions. It is clear
that practical computations cannot be performed on unbounded meshes. Therefore,
in practical numerical experiments, we replace an infinite mesh by its sufficiently large
finite restriction. It is possible to write a natural generalization of our scheme to the
case of many species with many features.

The main ideas of the paper come from Z. Kamont’s monograph [8], however there
is a significant difference: we study the dynamics of discrete solutions in l∞∩l1 norms,
whereas the cited monograph is focussed on l∞ estimates. Our task is much harder,
thus our recurrence estimates are subtle. It is possible to extend our stability results
to the case of Hale-type functional dependence for the unknown density and total size
of population.

2. FINITE DIFFERENCE SCHEME

For a given number N0 ∈ N introduce discretization parameters h0 = a
N0

and h1 > 0.

Infinite regular meshes on the sets E0, E are given as follows. Denote by
(
t(i), x(j)

)
,

i = 0, . . . , N0, j = 0, . . . , where t(i) = ih0, x
(j) = jh1, knots of the mesh. The mesh

in E will be denoted by Eh, and define the initial mesh E0.h =
{
x(j) : j = 0, . . .

}
.

The values of any discrete function u : Eh → R+ at the knots are denoted by u(i,j) =
u
(
t(i), x(j)

)
. It follows from the biological interpretation that characteristics are non

decreasing in the interior of the set E, hence we define the respective discrete operators
δ0, δ−

δ0u
(i,j) =

u(i+1,j) − u(i,j)

h0
, δ−u

(i,j) =
u(i,j) − u(i,j−1)

h1
,

which approximate the partial derivatives
∂u

∂t
and

∂u

∂x
at the knots. Let

c(i,j)[z] = c(t(i), x(j), z(i)), λ(i,j)[u, z] = λ(t(i), x(j), u(i,j), z(i)).

Consider the following finite difference scheme

δ0u
(i,j) + c(i,j)[z]δ−u

(i,j) = u(i,j)λ(i,j)[u, z] (2.1)

for i = 0, . . . , N0 − 1, j = 1, . . . , with the initial condition u(0,j) = v(j), j = 0, . . . ,
where

z(i) = h1

+∞∑
j=0

u(i,j), i = 0, . . . , N0, (2.2)
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and with the renewal

u(i,0) = h1

+∞∑
j=0

k(i,j)u(i,j), i = 0, . . . , N0. (2.3)

Discrete consistency condition is given by

v(0) = h1

+∞∑
j=0

k(0,j)v(j).

Introduce the following normed spaces. In the space l∞, of all bounded sequences
ψ = (ψ(j))j∈N, we have natural supremum norm ‖ψ‖. The space l1, of all summable
sequences ψ = (ψ(j))j∈N, is equipped with the norm

‖ψ‖1 = h1

+∞∑
j=0

|ψ(j)| for (ψ(j)) ∈ l1.

For a given discretization parameter h1 > 0, denote by Rh the infinite regular mesh
on the set R+, i.e. Rh = {x(j) : j = 0, 1, . . .}, where x(j) = jh1. Given any function
y : R+ → R+ we denote by yh its restriction to the mesh Rh. If the function y
is bounded, then ‖yh‖ < +∞. If y ∈ L1(R+,R+) (summable functions), then it is
possible that ‖yh‖1 = +∞. To exclude this case we introduce a new class of functions.

Definition 2.1. A function f ∈ L1(R+,R+) is of class L1
M iff there is a decreasing

function g ∈ L1(R+,R+) such that |f(x)| ≤ g(x), x ∈ R+.

If f ∈ L1
M, then ‖fh‖1 < +∞.

We formulate the following assumptions on given functions and discretization pa-
rameters:

(KH) There is k̂ ∈ R+ such that h1k̂ < 1 and 0 ≤ k(i,j) ≤ k̂ on Eh.
(V) v ∈ CB (R+,R+) (nonnegative, bounded and continuous functions) and

v ∈ L1(R+,R+).
(V1) There is V ∈ L1

M such that

v(j) ≤ V (j), V (0) ≥ h1k̂
+∞∑
j=0

V (j) + 1.

(C) c : Ω0 → R+ is bounded, continuous in (t, x, q) and there is a constant L∗c ∈ R+

such that
|c(t, x, q)− c(t, x, q̄)| ≤ L∗cV (x) |q − q̄|,

where a function V is given in Assumption (V1).
(C1) There are ε0, ĉ > 0 such that c : Ω0 → R+ satisfies

c(t, 0, q) ≥ ε0ĉ > 0, ĉ ≥ c(t, x, q) ≥ 0 on Ω0.
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(Λ) λ : Ω→ R is continuous in (t, x, w, q) and

|λ(t, x, w, q)− λ(t, x, w̄, q̄)| ≤ Lλ(|w − w̄|+ |q − q̄|),

where Lλ > 0.
(Λ1) There is a constant Mλ ∈ R+ such that

λ(t, x, w, q) ≤Mλ

for (t, x) ∈ E, w, q ∈ R+.
(N) The initial function is nonnegative and

1− h0
h1
c(t, x, q) + h0λ(t, x, p, q) ≥ 0 on Eh.

We give some properties of the scheme. It follows from (2.1) that values u(i+1,j)

can be explicitly computed for all j = 1, . . .

u(i+1,j) = u(i,j)
(

1− h0
h1
c(i,j)[z] + h0λ

(i,j)[u, z]

)
+
h0
h1
c(i,j)[z]u(i,j−1). (2.4)

By the renewal equation (2.3), we have

u(i+1,0) =
h1

1− h1k(i+1,0)

+∞∑
j=1

k(i+1,j)u(i+1,j). (2.5)

Given a discrete function u : Eh → R, we have u(i,·) : Rh → R, i = 0, . . . , N0.

Lemma 2.2. If Assumption (C1), (N), (KH) are satisfied, then any solution of
(2.1)–(2.3) is nonnegative.

Proof. An elementary proof goes by induction on i. It uses (2.4) and the explicit
representation (2.5).

Lemma 2.3. If Assumptions (C), (C1), (N), (KH), (Λ1), (V1) are satisfied, then

u(i,j) ≤ V (j−i)(1 + h0Mλ)i for j ≥ i,

u(i,j) ≤ V (0) (1 + h0Mλ)i

(1− h1k̂)i−j
for j ≤ i.

Proof. The proof is by induction on i. The estimate is obvious for i = 0. Assume the
assertion holds for arbitrary i = 0, . . . , N0− 1. We prove it for i+ 1 by virtue of (2.4)
and (2.5). Since the function V is decreasing, it is easy to show the first assertion for
j ≥ i. Indeed, by (2.4) we have

u(i+1,j) ≤ V (j−i)(1 + h0Mλ)i(1− θ + h0Mλ) + θV (j−1−i)(1 + h0Mλ)i

where θ = (h0/h1)c(i,j)[z]. Hence

u(i+1,j) ≤ V (j−1−i)(1 + h0Mλ)i(1 + h0Mλ) for j ≥ i.
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For 1 ≤ j ≤ i, denote θ = (h0/h1)c(i,j)[z]. Since θ ∈ [0, 1], then we have

u(i+1,j) ≤ V (0) (1 + h0Mλ)i

(1− h1k̂)i−j

(
1− h0

h1
c(i,j)[z] + h0λ

(i,j)[u, z]

)
+

+ V (0) (1 + h0Mλ)i

(1− h1k̂)i−(j−1)
h0
h1
c(i,j)[z] ≤

≤ V (0) (1 + h0Mλ)i

(1− h1k̂)i+1−j

[
(1− h1k̂) (1− θ + h0Mλ) + θ

]
≤

≤ V (0) (1 + h0Mλ)i

(1− h1k̂)i+1−j
(1 + h0Mλ).

Let j = 0. Then we insert (2.4) to (2.5), apply the inductive assertion and we have

u(i+1,0) ≤ h1k̂

1− h1k̂
V (0)(1 + h0Mλ)i×

×
i∑

j=1

{
1− h0

h1
c(i,j)[z] + h0λ

(i,j)[u, z]

(1− h1k̂)i−j
−

h0

h1
c(i,j)[z]

(1− h1k̂)i−j+1

}
+

+
h1k̂

1− h1k̂
(1 + h0Mλ)i+1

+∞∑
j=i+1

V (j−i−1) ≤

≤ h1k̂

1− h1k̂
(1 + h0Mλ)i+1


i∑

j=1

V (0)

(1− h1k̂)i−j+1
+

+∞∑
j=0

V (j)

 ≤
≤ V (0) (1 + h0Mλ)i+1

1− h1k̂

 h1k̂

(1− h1k̂)i+1

i∑
j=1

(1− h1k̂)j + 1

 =

= V (0) (1 + h0Mλ)i+1

(1− h1k̂)i+1
.

This completes the proof.

Corollary 2.4. Under the assumptions of Lemma 2.3 the solution of (2.1)–(2.2) is
bounded in l∞ and l1.

3. STABILITY OF FINITE DIFFERENCE SCHEME

Consider the finite difference scheme (2.1)–(2.3) with perturbed right-hand sides:

ū(i+1,j) = ū(i,j)
(

1− h0
h1
c(i,j)[z̄] + h0λ

(i,j)[ū, z̄]

)
+
h0
h1
c(i,j)[z̄]ū(i,j−1) + h0ξ

(i,j) (3.1)
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for i = 0, . . . , N0 − 1, j = 1, . . . , the perturbed initial condition ū(0,j) = v(j) + ξ̄(j),
j = 0, . . . , and

z̄(i) = h1

+∞∑
j=0

ū(i,j) + ξ̃(i), ū(i,0) = h1

+∞∑
j=0

k(i,j)ū(i,j) + ξ̂(i), i = 0, . . . , N0. (3.2)

(Ū) The solution of (3.1), (3.2) satisfies:

(i) |ū(i,j) − ū(i,j−1)| ≤ h1Lu on Eh with a constant Lu > 0,
(ii) ū(i,j) ≤ V (i,j), where

V (i,j) := V (j−i)(1 + h0Mλ)i for j ≥ i,

V (i,j) := V (0) (1 + h0Mλ)i

(1− h1k̂)i−j
for j ≤ i.

(Ξ) The perturbations ξ(i,j), ξ̂(i), ξ̄(j), ξ̃(i) satisfy

|ξ(i,j)| ≤ δhV (j), |ξ̄(j)| ≤ δhV (j), |ξ̂(i)| ≤ δ̂h, |ξ̃(i)| ≤ δ̃h

and δ̃h = δ̂h/k̂.
Denote ε(i,j)u = ū(i,j)−u(i,j) and ε(i)z = z̄(i)−z(i). To get l∞ and l1 error estimates,

we intend to estimate |ε(i,j)u | by some W (i,j)
h which is summable, increasing in i,

decreasing in j.

Remark 3.1. The function V (i,j) satisfies the inequalities

V (i,0) ≥ h1k̂
+∞∑
j=0

V (i,j), V (i+1,j) ≥ (1 + h0Mλ)V (i,j−1).

Define W (i,j)
h by means of V (i,j):

W
(i,j)
h := βhV

(j−i)(1 + h0Q)i for j ≥ i,

W
(i,j)
h := βhV

(0) (1 + h0Q)i

(1− h1k̂)i−j
for j ≤ i

with some constants βh, Q to be specified in terms of the data.

Lemma 3.2. If |ε(i,j)u | ≤W (i,j)
h and Assumptions (Ξ), (KH) are satisfied, then

|ε(i)z | ≤ h1
+∞∑
j=0

W
(i,j)
h + δ̃h, |ε(i,0)u | ≤ h1k̂

+∞∑
j=0

W
(i,j)
h + δ̂h. (3.3)

Proof. By the definition of the error ε(i)z , we have

|ε(i)z | ≤ h1
+∞∑
j=0

|ε(i,j)u |+ |ξ̃(i)| ≤ h1
+∞∑
j=0

W
(i,j)
h + δ̃h.

The second assertion is analogous.
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Lemma 3.3. If Assumptions (C), (C1), (N), (Ξ), (Ū), (Λ), (Λ1) are satisfied and
|ε(i,j)u | ≤W (i,j)

h , then

|ε(i+1,j)
u | ≤ (1 + h0Mλ)W

(i,j−1)
h +

+ h0LuL
∗
cV

(j)|ε(i)z |+ h0LλV
(i,j)

[
W

(i,j)
h + |ε(i)z |

]
+ h0δhV

(j).
(3.4)

Proof. Subtracting the both sides of (3.1), (2.4) and applying Assumptions (C1), (N),
we get

|ε(i+1,j)
u | ≤ |ε(i,j)u |

(
1− h0

h1
c(i,j)[z] + h0λ

(i,j)[u, z]

)
+
h0
h1
c(i,j)[z]|ε(i,j−1)u |+

+ |ū(i,j) − ū(i,j−1)|h0
h1
|∆c(i,j)|+ h0ū

(i,j)|∆λ(i,j)|+ h0|ξ(i,j)|,

where

∆c(i,j) = c(i,j)[z̄]− c(i,j)[z], ∆λ(i,j) = λ(i,j)[ū, z̄]− λ(i,j)[u, z].

The remaining part of the proof is a consequence of Assumptions (Ξ), (Ū), (C), (Λ)
and the definition of W (i,j)

h .

Lemma 3.4. If βh = max
{
δh, δ̂h

}
, Assumptions (C), (C1), (Ξ), (Ū), (Λ), (Λ1),

(KH), (V1) are satisfied and

Q ≥Mλ + LuL
∗
c

V (0)

k̂(1− h1k̂)N0

+ Lλ

(
V (0) +

V (0)

k̂(1− h1k̂)N0

)
+ 1,

then

W
(i,0)
h ≥ h1k̂

+∞∑
j=0

W
(i,j)
h + δ̂h

and

W
(i+1,j)
h ≥ (1 + h0Mλ)W

(i,j−1)
h + h0LuL

∗
cV

(j)W
(i,0)
h

k̂
+

+ h0LλV
(i,j)

(
W

(i,j)
h +

W
(i,0)
h

k̂

)
+ h0δhV

(j).
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Proof. By the definition of the comparison function Wh, we obtain

h1K̂

+∞∑
j=0

W
(i,j)
h + δ̂h ≤

≤ h1k̂βh(1 + h0Q)i

i−1∑
j=0

V (0) (1− h1k̂)j

(1− h1k̂)i
+

+∞∑
j=i

V (j−i)

+ βh ≤

≤ βh

(
V (0) (1 + h0Q)i

(1− h1k̂)i

(
1− (1− h1k̂)i−1

)
+
(
V (0) − 1

)
(1 + h0Q)i + 1

)
≤

≤ βhV
(0) (1 + h0Q)i

(1− h1k̂)i
= W

(i,0)
h .

Denote by RHS the right-hand side of the last assertion. For j ≥ i, we have the
estimates

RHS ≤ βh(1 + h0Q)i
(

(1 + h0Mλ)V (j−i−1) + h0V
(j) LuL

∗
cV

(0)

K̂(1− h1k̂)i

)
+

+ h0LλV
(j−i)(1 + h0Q)i

(
βhV

(j−i) +
βhV

(0)

k̂(1− h1k̂)i

)
+ h0βhV

(j) ≤

≤ βhV (j−i−1)(1 + h0Q)i

(
1 + h0Mλ + h0

LuL
∗
cV

(0)

k̂(1− h1k̂)i
+

+ h0LλV
(0)

[
1 +

1

k̂(1− h1k̂)i

]
+ h0

)
≤

≤ βhV (j−i−1)(1 + h0Q)i+1 = W
(i+1,j)
h .

In the similar way we proceed for 1 ≤ j ≤ i :

RHS ≤ βhV (0) (1 + h0Q)i

(1− h1k̂)i−j+1
(1 + h0Mλ + h0LλV

(0))+

+ h0βhV
(0) (1 + h0Q)i

(1− h1k̂)i−j+1

(
LuL

∗
cV

(0)

k̂(1− hk̂)i
+

LλV
(0)

k̂(1− hk̂)i
+ 1

)
≤

≤ βhV (0) (1 + h0Q)i+1

(1− h1k̂)i+1−j
= W

(i+1,j)
h .

The proof is complete.

Theorem 3.5. If Assumptions (C), (C1), (N), (KH), (Ξ), (Ū), (Λ), (Λ1), (V), (V1)
are satisfied, then

∥∥ū(i,·) − u(i,·)∥∥ , ∥∥ū(i,·) − u(i,·)∥∥
1
→ 0, as h→ 0.
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Proof. By Lemma 3.2, we have

|ε(i)z | ≤ h1
+∞∑
j=1

W
(i,j)
h + δ̂h/k̂ ≤W (i,0)

h /k̂.

Hence W (i,j)
h satisfies comparison inequalities (3.3), (3.4) with respect to ε(i,j)u with

βh and Q given in Lemma 3.4. Thus we have the pointwise estimates

|ε(i,j)u | ≤W (i,j)
h on Eh.

From this inequality we get the l∞ and l1 estimates:

‖ε(i,·)u ‖ ≤ βhV (0) (1 + h0Q)i

(1− h1k̂)i
,

‖ε(i,·)u ‖1 ≤ βh(1 + h0Q)i

(
V (0) 1− (1− h1k̂)i+1

k̂(1− h1k̂)i
+ ‖V ‖1

)
.

Since βh tends to 0, as h→ 0, it is seen that the error ε(i,j)u does so in l∞ and l1.

4. NUMERICAL EXPERIMENTS

Since practical computations cannot be performed in unbounded domains, we truncate
the area to a sufficiently large bounded region. The number of knots for each time-layer
is equal to Nh, depending on the discretization parameter h = (h0, h1). Define the
discretization errors in the following way

∆u = max
i=0,...,N0
j=0,...,Nh

∣∣u(i,j) − ũ(t(i), x(j))∣∣, ∆z = max
i=0,...,N0

∣∣z(i) − z̃(t(i))∣∣,
where the discrete functions u, z, obtained by the difference scheme (2.1)–(2.3), ap-
proximate the solution ũ and the function z̃. The results of experiments are presented
in the tables. In both examples we assume that h1 = 2h0.

Example 4.1. Let

λ(t, x, u, z) = 1/(1 + t)− 2ux(sinx+ 1) sin2 z/(1 + x2),

c(t, x, z) = (t+ 1)(sinx+ 1) sin2 z/(1 + x2),

k(t, x) = 2e(cosx+ 1)/(π(e+ 1)),

v(x) = 1/(1 + x2).

The solution of problem (1.1)–(1.4) with the above functions is equal to ũ(t, x) =
t+ 1

1 + x2
. Easy calculation gives z̃(t) =

π

2
(t+ 1).
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Table 1
h0 h1Nh ∆u ∆z

0.01 50 0.012012 0.025081
100 0.009782 0.002658

0.005 100 0.006021 0.012510
200 0.004989 0.001289

Example 4.2. Consider problem (1.1)-(1.4) with the functions

λ(t, x, u, z) = −2(1 + t)u− 2ux(1 + t)(sinx+ 1) sin2 z/(1 + x2),

c(t, x, z) = (t+ 1)(sinx+ 1) sin2 z/(1 + x2),

k(t, x) =
2(cosx+ 1)

π(1 + t)(exp(−1− t) + 1)
,

v(x) = 1/(1 + x2),

whose solution is equal to u(t, x) =
1

(1 + t)2 + x2
and z(t) =

π

2(t+ 1)
.

Table 2
h0 h1Nh ∆u ∆z

0.01 50 0.006444 0.021513
100 0.004207 0.009745
200 0.004537 0.004752

0.005 50 0.007555 0.022450
100 0.003249 0.010740
200 0.002160 0.004867
250 0.002154 0.003708
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