PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Evaluation and statistical interpretation of low-temperature geothermal energy potential for selected locations in Poland

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Fulfilling the binding national, EU and other international regulations and requirements on climate and energy implies significant growth of renewables share in the total mix of energy production in Poland. Low-temperature geothermal energy extracted with the use of the ground source heat pumps (GSHP) is an efficient and reliable source for space heating, cooling and seasonal thermal energy storage and recovery, thus it contributes to reduction of low emissions and improvement of air quality. GSHP effectiveness is to a high degree determined by local geological and hydrogeological settings, therefore identification of natural properties of the subsurface is crucial for appropriate design and subsequent operation of the GSHP installations. The thermal conductivity λ of rocks and soils, a key geothermal parameter, depends on such features as the mineral composition of rocks and soils, their texture and water content. Relevant geological data is retrieved from thematic databases, atlases and serial maps and can be gathered in a unitary database with a uniform structure to enable spatial analysis with the use of GIS techniques. Reclassification of lithological properties into geothermal parameters and subsequent calculations of λ values (W/m·K) of rock and soil types can be made using a specific algorithm. The results of these calculations enables computation of four spatial layers of average geothermal conductivity coefficient λ (W/m·K), respectively for the depth intervals of 0-40, 41-70, 71-100 and 101-130 metres b.g.l.
Rocznik
Strony
506--514
Opis fizyczny
Bibliogr. 20 poz., rys., tab.
Twórcy
  • Polish Geological Institute - National Research Institute, al. Jaworowa 19, 53-122 Wrocław, Poland
  • Polish Geological Institute - National Research Institute, ul. Jagiellońska 76, 03-301 Warszawa, Poland
  • Polish Geological Institute - National Research Institute, ul. Jagiellońska 76, 03-301 Warszawa, Poland
  • Polish Geological Institute - National Research Institute, ul. Jagiellońska 76, 03-301 Warszawa, Poland
Bibliografia
  • 1. Berent-Kowalska, G., Jurgaś, A., Kacprowska, J., Pawelczyk, M., Szymańska, M., 2019. Energy from renewable sources in 2018 (in Polish with English executive summary, table headings and figure captions). Statistics Poland, Warsaw.
  • 2. Cabalska, J., Felter, A., Hordejuk, M., Mikołajczyk, A., 2005. The Polish Hydrogeological Survey Database Integrator - a new GIS tool for the hydrogeological database management useful in mapping process. Przegląd Geologiczny, 53: 917-920.
  • 3. Casasso, A., Pestotnik, S., Rajver, D., Jez, J., Prestor, J., Sethi, R., 2017. Assessment and mapping of the closed-loop shallow geothermal potential in Cerno (Slovenia). Energy Procedia. In: European Geosciences Union General Assembly 2017. EGU Division Energy. Resources and Environment. ERE, Vienna.
  • 4. Czerwińska-Tomczyk, J., Sadurski, A., 1998. Mapa Hydrogeologiczna Polski w skali 1:50 000, arkusz Zamość (862), główny poziom użytkowy (in Polish). Electronic version. Polish Geological Institute - National Research Institute, Warsaw.
  • 5. Dąbrowski, S., Trzeciakowska, M., Straburzyńska, R., 2000. Mapa Hydrogeologiczna Polski w skali 1:50 000, arkusz Poznań (471), główny poziom użytkowy (in Polish). Electronic version. Polish Geological Institute - National Research Institute, Warsaw.
  • 6. Directive 2018/2001/EU of the European Parliament and of the Council of 11 December 2018 on the promotion of the use of energy from renewable sources. Official Journal of the EU, 328: 82-209.
  • 7. European Commission, 2019. Clean Energy for All Europeans. Publications Office of the European Union, Luxembourg.
  • 8. García-Gil, A., Goetzl, G., Kłonowski, M.R., Borovic, S., Boon, D.P., Abesser, C., Janza, M., Herms, I., Petitclerc, E., Erlström, M., Holecek, J., Hunter, T., Vandeweijer, V.P., Cernak, R., Mejias Moreno, M., Epting, J., 2020. Governance of shallow geothermal energy resources. Energy Policy, 138: 1-11.
  • 9. GeoPLASMA-CE project, 2017. Joint Report on Chosen Approaches and Methods for Calibration on the project website. Viewed 10 February 2020, https://www.geoplasma-ce.eu/content.node/GeoPLASMA-CE/CE177-GeoPLASMA-CE-DT3.5.1-Joint-report-on-chosen-approaches.pdf.
  • 10. Kępińska, B., 2019. Geothermal Energy Use - Country Update for Poland. 2016-2018. In: Proceedings of European Geothermal Congress 2019, Den Haag, The Netherlands, 11-14.06.2019. The Hague.
  • 11. Kłonowski, M.R., Kocyła, J., Ryżyński, G., Żeruń, M., 2018. Assessment of low-temperature geothermal energy potential based on analysis, interpretation and reclassification of geological data in urban areas (in Polish with English abstract). Technika Poszukiwań Geologicznych, Geotermia, Zrównoważony Rozwój, 57: 19-38.
  • 12. Lachman, P., Mirowski, A., Oczoś, A., Karczmarzyk, A., Sawicki, C., Koczorowski, J., Smuczyńska, M., Franke, M., Zbrojkiewicz, S., 2013. Wytyczne projektowania wykonania i odbioru instalacji z pompami ciepła (in Polish). Polska Organizacja Rozwoju Technologii Pomp Ciepła PORT PC, Kraków.
  • 13. Luo, J., Rohn, J., Xiang, W., Bertermann, D., Blum, P., 2016. A review of ground investigations for ground source heat pump (GSHP) systems. Energy and Buildings, 117: 160-175.
  • 14. Mianowski, Z., 1997. Mapa Hydrogeologiczna Polski w skali 1:50 000, arkusz Pruszków (559), główny poziom użytkowy (in Polish). Electronic version. Polish Geological Institute - National Research Institute, Warsaw.
  • 15. Nejat, P., Jomehzadeh, F., Taher, M.M., Gohari, M., Majid, M.Z., 2015. A global review of energy consumpiion. CO2 emissions and policy in the residential sector (with an overview of the top ten CO2 emitting countries). Renewable and Sustainable Energy Reviews, 43: 843-862.
  • 16. Orłowski, R., Lidzbarski, M., 1998. Mapa Hydrogeologiczna Polski w skali 1:50 000, arkusz Gdynia (16), główny poziom użytkowy (in Polish). Electronic version. Polish Geological Institute - National Research Institute, Warsaw.
  • 17. Pietruszka, W., Zezula, H., 2004. Mapa Hydrogeologiczna Polski w skali 1:50 000, arkusz Biała Podlaska (568), główny poziom użytkowy (in Polish). Electronic version. Polish Geological Institute - National Research Institute, Warsaw.
  • 18. Sarbu, I., Sebarchievici, C., 2014. General review of groundsource heat pump systems for heating and cooling of buildings. Energy and Buildings, 70: 441-454.
  • 19. Self, J.S., Reddy, V.B., Rosen, A.M., 2013. Geothermal heat pump systems: status review and comparison with other heating options. Applied Energy, 101: 341-348.
  • 20. Żuk, U., 2000. Mapa Hydrogeologiczna Polski w skali 1:50 000, arkusz Wrocław (764), główny poziom użytkowy (in Polish). Electronic version. Polish Geological Institute - National Research Institute, Warsaw.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3f9fe02f-cb02-41dd-9549-065f4af2962f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.