PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Impact-based piezoelectric energy harvesting system excited from diesel engine suspension

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Vibration energy harvesting systems are using real ambient sources of vibration excitation. In our paper, we study the dynamical voltage response of the piezoelectric vibrational energy harvesting system (PVEHs) with a mechanical resonator possessing an amplitude limiter. The PVEHs consist of the cantilever beam with a piezoelectric patch. The proposed system was subjected to the inertial excitation from the engine suspension. Impacts of the beam resonator are useful to increase of system’s frequency transition band. The suitable simulations of the resonator and piezoelectric transducer are performed by using measured signal from the engine suspension. Voltage outputs of linear (without amplitude limiter) and nonlinear harvesters were compared indicating better efficiency of the nonlinear design.
Rocznik
Strony
16--29
Opis fizyczny
Bibliogr. 34 poz., fig., tab.
Twórcy
autor
  • Lublin University of Technology, Faculty of Mechanical Engineering, Nadbystrzycka 36, 20-618 Lublin, Poland
  • Lublin University of Technology, Faculty of Mechanical Engineering, Nadbystrzycka 36, 20-618 Lublin, Poland
  • Lublin University of Technology, Faculty of Mechanical Engineering, Nadbystrzycka 36, 20-618 Lublin, Poland
  • Lublin University of Technology, Faculty of Mechanical Engineering, Nadbystrzycka 36, 20-618 Lublin, Poland
  • Lublin University of Technology, Faculty of Mechanical Engineering, Nadbystrzycka 36, 20-618 Lublin, Poland
  • Lublin University of Technology, Faculty of Mechanical Engineering, Nadbystrzycka 36, 20-618 Lublin, Poland
Bibliografia
  • [1] Al-Yafeai, D., Darabseh, T., & Mourad, A.H.I. (2020). A state-of-the-art review of car suspension-based piezoelectric energy harvesting systems. Energies, 13, 2336. https://doi.org/10.3390/ en13092336
  • [2] Ambrożkiewicz, B., Litak, G., & Wolszczak, P. (2020). Modelling of electromagnetic energy harvester with rotational pendulum using mechanical vibrations to scavenge electrical energy. Applied Sciences, 10, 671. https://doi.org/10.3390/app10020671
  • [3] Askari, H., Hashemi, E., Khajepour, A., Khamesee, M.B., & Wang, Z.L. (2018). Towards self-powered sensing using nanogenerators for automotive systems. Nano Energy, 53, 1003–1019. https://doi.org/10.1016/j.nanoen.2018.09.032
  • [4] Borowiec, M., Litak, G., & Lenci, S. (2014). Noise effected energy harvesting in a beam with stopper. International Journal of Structural Stability and Dynamics, 14, 1440020. https://doi.org/10.1142/S0219455414400203
  • [5] Bowen, C.R., & Arafa, M.H. (2015). Energy harvesting technologies for tire pressure monitoring systems. Advanced Energy Materials, 5, 1401787. https://doi.org/10.1002/aenm.201401787
  • [6] Chandru, A.A., Murugan, S.S., & Keerthika, V. (2016). Design and implementation of an energy harvester for Low-Power devices from vibration of automobile engine. Advances in Intelligent Systems and Computing, 397, 1–8.
  • [7] Erturk, A., Hoffmann, J., & Inman, D.J. (2009). A piezomagnetoelastic structure for broadband vibration energy harvesting. Applied Physics Letters, 94, 254102. https://doi.org/10.1063/ 1.3159815
  • [8] Feng, Z., Liang, M., & Chu, F. (2013). Recent advances in time-frequency analysis methods for machinery fault diagnosis: A review with application examples. Mechanical Systems and Signal Processing, 38, 165-205. https://doi.org/10.1016/j.ymssp.2013.01.017
  • [9] Figlus, T., Szafraniec, P., & Skrucany, T. (2019). Methods of measuring and processing signals during tests of the exposure of a motorcycle driver to vibration and noise. International Journal of Environmental Research and Public Health, 16, 17, 3145. https://doi.org/10.3390/ ijerph16173145
  • [10] Gardyński, L., Caban, J., & Droździel, P. (2015). The impact of stiffness of engine suspension cushions in an all-terrain vehcile on its transverse displacement. Journal of Science of the Military Academy of Land Forces, 47, 95–102.
  • [11] Gatti, C.D., Ramirez, J.M., Febbo, M., & Machado, S.P. (2018). Multimodal piezoelectric device for energy harvesting from engine vibration. Journal of Mechanics of Materials and Structures, 13, 17-34. https://doi.org/10.2140/jomms.2018.13.17
  • [12] Huang, D., Zhou, S., & Litak, G. (2019). Theoretical analysis of multi-stable energy harvesters with high order stiffness terms. Communications in Nonlinear Science and Numerical Simulation, 69, 270-286. https://doi.org/10.1016/j.cnsns.2018.09.025
  • [13] Huguet, T., Lallart, M., & Badel, A. (2019). Orbit jump in bistable energy harvesters through buckling level modification. Mechanical Systems and Signal Processing, 128, 202–215. https://doi.org/10.1016/j.ymssp.2019.03.051
  • [14] Jung, H.J., Song, Y., Hong, S.K., Yang, C.H., Hwang, S.J., Jeong, S.Y., & Sung, T.H. (2015). Design and optimization of piezoelectric impact-based micro wind energy harvester for wireless sensor network. Sensors and Actuators, A 222, 314–321. https://doi.org/10.1016/ j.sna.2014.12.010
  • [15] Khalatkar, A.M., & Gupta, V.K. (2017). Piezoelectric energy harvester for low engine vibrations. Journal of Renewable and Sustainable Energy, 9, 024701. https://doi.org/10.1063/1.4979501
  • [16] Kim, G.W. (2014). Piezoelectric energy harvesting from torsional vibration in internal combustion engines. International Journal of Automotive Technology, 16, 645–651. https://doi.org/ 10.1007/s12239-015-0066-6
  • [17] Koszewnik, A. (2019). Analytical modelling and experimental validation of an energy harvesting system for the smart plate with integrated piezo-harvester. Sensors, 19, 812. https://doi.org/10.3390/s19040812
  • [18] Koszewnik, A. (2020). Experimental validation of equivalent circuit modelling of the piezo-stripe harvester attached to SFSF rectangular plate. Acta Mechanica et Automatica, 14, 8–15. https://doi.org/10.2478/ama-2020-0002
  • [19] Litak, G, Friswell, M.I., & Adhikari, S. (2010) Magnetopiezoelastic energy harvesting driven by random excitations. Applied Physics Letters, 96, 214103. https://doi.org/10.1063/1.3436553
  • [20] Łukjanow, S., & Zieliński, W. (2016). Examination and assessment of electric vehicles’ operational safety. The Archives of Automotive Engineering – Archiwum Motoryzacji, 74, 4, 59–82. https://doi.org/10.14669/AM.VOL74.ART5
  • [21] Matsuzaki, R., & Todoroki, A. (2008). Wireless Monitoring of Automobile Tires for Intelligent Tires. Sensors, 8, 8123-8138. https://doi.org/10.3390/s8128123
  • [22] Mieczkowski, G., Borawski, A., & Szpica, D. (2019). Static electromechanical characteristic of three-layer circular piezoelectric transducer. Sensors, 20, 222. https://doi.org/10.3390/s20010222
  • [23] Šarkan, B., Gnap, J., & Kiktová, M. (2019). The importance of hybrid vehicles in urban traffic in terms of environmental impact. The Archives of Automotive Engineering – Archiwum Motoryzacji, 85, 3, 115–122. https://doi.org/10.14669/AM.VOL85.ART8
  • [24] Skrucany, T., Kendra, M., Stopka, O., Milojevic, S., Figlus, T., & Csiszar, C. (2019). Impact of the electric mobility implementation on the Greenhouse Gases production in central European Countries. Sustainability, 11(18), 4948. https://doi.org/10.3390/su11184948
  • [25] Smutny, J., Nohal, V., Vukusicova, D., & Seelmann, H. (2018). Vibration analysis by the Wigner-Ville transformation method. Communications – Scientific Letters of the University of Zilina, 20, 4, 24–28.
  • [26] Taghizadeh-Alisaraei, A., Ghobadian, B., Tavakoli-Hashjin, T., & Mohtasebi, S.S. (2012). Vibration analysis of a diesel engine using biodiesel and petrodiesel fuel blends. Fuel, 102, 414–422.
  • [27] Tan, Y., Dong, Y., & Wang, X. (2017). Review of MEMS electromagnetic vibration energy harvester. Journal of Microelectromechanical Systems, 26, 1–16.
  • [28] Vijayan, K., Friswell, M.I., Khodaparast, H.H., & Adhikari, S. (2015). Non-linear energy harvesting from coupled impacting beams. International Journal of Mechanical Sciences, 96-97, 101-109. https://doi.org/10.1016/j.ijmecsci.2015.03.001
  • [29] Xie, X., & Wang, Q. (2015). A mathematical model for piezoelectric ring energy harvesting technology from vehicle tires. International Journal of Engineering Science, 94, 113–127. https://doi.org/10.1016/j.ijengsci.2015.05.004
  • [30] Zhang, Y. (2014). Piezoelectric based energy harvesting on low frequency vibrations of civil infrastructures. LSU Doctoral Dissertations, 1342.
  • [31] Zhang, Y., Wang, T., Luo, A., Yushen, H., Li, X., & Wang, F. (2018). Micro electrostatic energy harvester with both broad bandwidth and high normalized power density. Applied Energy, 212, 362–371. https://doi.org/10.1016/j.apenergy.2017.12.053
  • [32] Zhang, Y., Zheng, R., Shimono, K., Kaizuka, T., & Nakano, K. (2016). Effectiveness testing of a piezoelectric energy harvester for an automobile wheel using stochastic resonance. Sensors, 16(10), 1727. https://doi.org/10.3390/s16101727
  • [33] Zhao, L., & Yang, Y. (2018). An impact-based broadband aeroelastic energy harvester for concurrent wind and base vibration energy harvesting. Applied Energy, 212, 233–243. https://doi.org/10.1016/j.apenergy.2017.12.042
  • [34] Zhu, B., Han, J., & Zhao, J. (2019). Study of Wheel Vibration Energy Harvesting for Intelligent Tires. Lecture Notes in Electrical Engineering, 486, 971–978. https://doi.org/10.1007/978-981-10-8506-2_65
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3f9ad19a-b661-4ca3-aaf4-25a88fed9525
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.