PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Kinetic, isotherm and thermodynamics investigation on adsorption of divalent copper using agro-waste biomaterials, Musa acuminata, Casuarina equisetifolia L. and Sorghum bicolor

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Three novel and distinct agricultural waste materials, viz., Casuarinas fruit powder (CFP), sorghum stem powder (SSP) and banana stem powder (BSP) were used as low cost adsorbents for the removal of toxic copper(II) from aqueous solutions. Acid treated adsorbents were characterized by SEM, EDX and FTIR. Different factors effecting adsorption capacity were analyzed and the efficiency order was BSP>SSP>CFP. Based on the extent of compatibility to Freundlich/Langmuir/D-R/Temkin adsorption isotherm and different models (pseudo-first and second order, Boyd, Weber’s and Elovich), chemisorption primarily involved in the case of CFP and SSP, whereas, simultaneous occurrence of chemisorption and physisorption was proposed in the case of BSP. Based on the observations, it was proposed that three kinetic stages involve in adsorption process viz., diffusion of sorbate to sorbent, intra particle diffusion and then establishment of equilibrium. These adsorbents have promising role towards removal of Cu(II) from industrial wastewater to contribute environmental protection.
Rocznik
Strony
68--77
Opis fizyczny
Bibliogr. 55 poz., rys., tab.
Twórcy
  • Acharya Nagarjuna University, Department of Chemistry, ANUCET, Guntur – 522510, India
autor
  • Acharya Nagarjuna University, Department of Biotechnology, Guntur – 522510, India
  • GITAM University – Bengaluru, Karnataka – 561203, India
Bibliografia
  • 1. Larous, S. & Meniai, A.H. (2012). Removal of copper (II) from aqueous solution by agricultural by-products-sawdust. Ener. Proc. 18, 915–923. DOI: 10.1016/j.egypro.2012.05.106.
  • 2. Rozaini, C.A., Jain, K., Oo, C.W., Tan, K.W., Tan, L.S., Azraa, A. & Tong, K.S. (2010). Optimization of nickel and copper ions removal by modified mangrove barks. Int. J. Chem. Eng. Appl. 1(1), 84–89. DOI: 10.7763/IJCEA.2010.V1.14.
  • 3. WHO, World Health Organization (2004). Guidelines for Drinking-water Quality, third ed., Recommendations, Geneva.
  • 4. Manzoor, Q., Nadeem, R., Iqbal, M., Saeed, R. & Ansari, T.M. (2013). Organic acids pretreatment effect on Rosa bourbonia phyto-biomass for removal of Pb (II) and Cu (II) from aqueous media. Biores. Technol. 132, 446–452. DOI: 10.1016/j.biortech.2013.01.156.
  • 5. Patrulea, V., Negrulescu, A., Mincea, M., Pitulice, L., Spiridon, O. & Ostafe, V. (2013). Optimization of the removal of copper(ii) ions from aqueous solution on chitosan and cross-linked chitosan beads. BioResources. 8. DOI: 10.15376/biores.8.1.1147-1165.
  • 6. Acar, F.N. & Eren, Z. (2006). Removal of Cu(II) ions by activated poplar sawdust (Samsun Clone) from aqueous solutions. J. Hazard. Mater. 137(2), 909–914. DOI: 10.1016/j.jhazmat.2006.03.014.
  • 7. Ramya, P.M., Venkata, N.R., Jayasravanthi, M. & Dulla, B.J. (2015). Chemical oxygen demand reduction from coffee processing waste water-A comparative study on usage of biosorbents prepared from agricultural wastes, Global NEST J. 17(2), 291–300.
  • 8. Cestari, A.R., Vieira, E.F., de Oliveira, I.A. & Bruns, R.E. (2007). The removal of Cu(II) and Co(II) from aqueous solutions using cross-linked chitosan-evaluation by the factorial design methodology, J. Hazard. Mater. 143(1–2), 8–16. DOI: 10.1016/j.jhazmat.2006.08.063.
  • 9. Lima, I.S., Lazarin, A.M. & Airoldi, C. (2005). Favorable chitosan/cellulose film combinations for copper removal from aqueous solutions. Int. J. Biol. Macromol. 36(1), 79–83. DOI: 10.1016/j.ijbiomac.2005.04.001.
  • 10. Jamnongkan, T., Kantarot, K., Niemtang, K., Pansila, P.P. & Wattanakornsiri, A. (2014). Kinetics and mechanism of adsorptive removal of copper from aqueous solution with poly (vinyl alcohol) hydrogel. Trans. Nonfer. Met. Soc. China 24(10), 3386–3393. DOI: 10.1016/S1003-6326(14)63481-6.
  • 11. Weng, C.H., Lin, Y.T., Hong, D.Y., Sharma, Y.C., Chen, S.C. & Tripathi, K. (2014). Effective removal of copper ions from aqueous solution using base treated black tea waste. Ecol. Eng. 67, 127–133. DOI: 10.1016/j.ecoleng.2014.03.053.
  • 12. Vieira, M.G.A., de Almeida Neto, A.F., da Silva, M.G.C., Carneiro, C.N. & Melo Filho, A.A. (2014). Adsorption of lead and copper ions from aqueous effluents on rice husk ash in a dynamic system. Braz. J. Chem. Eng. 31(2), 519–529. DOI: 10.1590/0104-6632.20140312s00002103.
  • 13. Hossain, M.A., Ngo, H.H., Guo, W.S. & Setiadi, T. (2012). Adsorption and desorption of copper (II) ions onto garden grass. Biores. Technol. 121, 386–395. DOI: 10.1016/j.biortech.2012.06.119.
  • 14. Liang, S., Guo, X., Feng, N. & Tian, Q. (2010). Isotherms, kinetics and thermodynamic studies of adsorption of Cu2+from aqueous solutions by Mg2+/K+ type orange peel adsorbents. J. Hazard. Mater. 174(1), 756–762. DOI: 10.1016/j.jhazmat.2009.09.116.
  • 15. Bilal, M., Shah, J.A., Ashfaq, T., Gardazi, S.M.H., Tahir, A.A., Pervez, A. & Mahmood, Q. (2013). Waste biomass adsorbents for copper removal from industrial wastewater-A review. J. Hazard. Mater. 263, 322–333. DOI: 10.1016/j.jhazmat.2013.07.071.
  • 16. Chen, J.P. & Yang, L. (2005). Chemical modification of Sargassum sp. for prevention of organic leaching and enhan-10.1515/pjct-2016-0031 cement of uptake during metal biosorption. Ind. Eng. Chem. Res. 44(26), 9931–9942. DOI: 10.1021/ie050678t.
  • 17. Li, Y., Xia, B., Zhao, Q., Liu, F., Zhang, P., Du, Q. & Xia, Y. (2011). Removal of copper ions from aqueous solution by calcium alginate immobilized kaolin. J. Env. Sci. 23(3), 404–411. DOI: 10.1016/S1001-0742(10)60442-1.
  • 18. Xue, Y., Gao, B., Yao, Y., Inyang, M., Zhang, M., Zimmerman, A.R. & Ro, K.S. (2012). Hydrogen peroxide modification enhances the ability of biochar (hydrochar) produced from hydrothermal carbonization of peanut hull to remove aqueous heavy metals: batch and column tests. Chem. Eng. J. 200, 673–680. DOI: 10.1016/j.cej.2012.06.116.
  • 19. Annual book of ASTM standards part – 23, (1972). Am. Soc. Test. Mater. Philadelphia.
  • 20. Gong, J.L., Wang, X.Y., Zeng, G.M., Chen, L., Deng, J.H., Zhang, X.R. & Niu, Q.Y. (2012). Copper (II) removal by pectin–iron oxide magnetic nanocomposite adsorbent. Chem. Eng. J. 185, 100–107. DOI: 10.1016/j.cej.2012.01.050.
  • 21. Li, K., Fu, S., Zhan, H., Zhan, Y. & Lucia, L. (2010). Analysis of the chemical composition and morphological structure of banana pseudo-stem. Bioresources 5(2), 576–585. DOI: 10.15376/biores.5.2.576-585
  • 22. Firdous, R. & Gilani, A.H. (2001). Changes in chemical composition of sorghum as influenced by growth stages and cultivar. Asian Australas. J. Anim. Sci. 14(7), 935–940. DOI: http://dx.doi.org/10.5713/ajas.2001.935.
  • 23. Ogunwande, I.A., Flamini, G., Adefuye, A.E., Lawal, N.O., Moradeyo, S. & Avoseh, N.O. (2011). Chemical compositions of Casuarina equisetifolia L., Eucalyptus toreliana L. and Ficus elastica Roxb. ex Hornem cultivated in Nigeria. S. Afr. J. Bot. 77(3), 645–649. DOI: 10.1016/j.sajb.2011.02.001.
  • 24. Lerivrey, J., Dubois, B., Decock, P., Micera, G., Urbanska, J. & Kozłowski, H. (1986). Formation of D-glucosamine complexes with Cu (II), Ni (II) and Co (II) ions. Inorg. Chim. Acta 125(4), 187–190. DOI: 10.1016/S0020-1693(00)81209-8.
  • 25. Mahaninia, M.H., Rahimian, P. & Kaghazchi, T. (2015). Modifi ed activated carbons with amino groups and their copper adsorption properties in aqueous solution. Chin. J. Chem. Eng. 23(1), 50–56. DOI: 10.1016/j.cjche.2014.11.004.
  • 26. Sarioglu, M., Atay, Ü.A. & Cebeci, Y. (2005). Removal of copper from aqueous solutions by phosphate rock. Desalination 181(1), 303–311. DOI: 10.1016/j.desal.2005.04.009.
  • 27. Kizilkaya, B., Tekinay, A.A. & Dilgin, Y. (2010). Adsorption and removal of Cu (II) ions from aqueous solution using pretreated fish bones. Desalination 264(1), 37–47. DOI: 10.1016/j.desal.2010.06.076.
  • 28. Ge, Y., Cui, X., Kong, Y., Li, Z., He, Y. & Zhou, Q. (2015). Porous geopolymeric spheres for removal of Cu (II) from aqueous solution: Synthesis and evaluation. J. Hazard. Mater. 283, 244–251. DOI: 10.1016/j.jhazmat.2014.09.038.
  • 29. Lagergren, S. (1898). On the theory of so-called adsorption solutes, The Royal Swedish Academy of Sciences. Handlingar 24(4), 1–39 (in German).
  • 30. Ho, Y.S. & McKay, G. (1999). Pseudo-second order model for sorption processes. Process Biochem. 34(5), 451–465. DOI: 10.1016/S0032-9592(98)00112-5.
  • 31. Ho, Y.S. & McKay, G. (2000). The kinetics of sorption of divalent metal ions onto sphagnum moss peat. Water Res. 34(3), 735–742. DOI: 10.1016/S0043-1354(99)00232-8.
  • 32. Ahluwalia, S.S. & Goyal, D. (2007). Microbial and plant derived biomass for removal of heavy metals from wastewater. Biores. Technol. 98(12), 2243–2257. DOI:10.1016/j.biortech.2005.12.006.
  • 33. Igwe, J.C. & Abia, A.A. (2005). Competitive adsorption of Zn (II), Cd (II) and Pb (II) ions from aqueous and nonaqueous solution by maize cob and husk. Afr. J. Biotechnol. 4(10), 1113–1116. DOI: 10.5897/AJB2005.000-3220.
  • 34. Goswami, S. & Ghosh, U.C. (2006). Studies on adsorption behaviour of Cr (VI) onto synthetic hydrous stannic oxide. Water SA, 31(4), 597–602. http://dx.doi.org/10.4314/wsa.v31i4.5150
  • 35. Greluk, M. & Hubicki, Z. (2009). Sorption of SPADNS azo dye on polystyrene anion exchangers: equilibrium and kinetic studies. J. Hazard. Mater. 172(1), 289–297. DOI: 10.1016/j.jhazmat.2009.07.007.
  • 36. Kumar, P. S., Ramalingam, S., Kirupha, S.D., Murugesan, A., Vidhyadevi, T. & Sivanesan, S. (2011). Adsorption behavior of nickel (II) onto cashew nut shell: Equilibrium, thermodynamics, kinetics, mechanism and process design. Chem. Eng. J. 167(1), 122–131. DOI: 10.1016/j.cej.2010.12.010.
  • 37. Garg, U.K., Kaur, M.P., Garg, V.K. & Sud, D. (2007). Removal of hexavalent chromium from aqueous solution by agricultural waste biomass. J. Hazard. Mater. 140(1), 60–68. DOI: 10.1016/j.jhazmat.2006.06.056.
  • 38. Chang, Y., Liu, H., Zha, F., Chen, H., Ren, X. & Lei, Z. (2011). Adsorption of Pb (II) by N-methylimidazole modified palygorskite. Chem. Eng. J. 167(1), 183–189. DOI: 10.1016/j.cej.2010.10.081.
  • 39. Özçimen, D. & Ersoy-Meriçboyu, A. (2009). Removal of copper from aqueous solutions by adsorption onto chestnut shell and grape seed activated carbons. J. Hazard. Mater. 168(2), 1118–1125. DOI: 10.1016/j.jhazmat.2009.02.148.
  • 40. Krishnan, K.A. & Anirudhan, T.S. (2003). Removal of cadmium (II) from aqueous solutions by steam-activated sulphurised carbon prepared from sugar-cane bagasse pith: Kinetics and equilibrium studies. Water SA, 29(2), 147–156. http://dx.doi.org/10.4314/wsa.v29i2.4849
  • 41. Zheng, W., Li, X. M., Wang, F., Yang, Q., Deng, P. & Zeng, G.M. (2008). Adsorption removal of cadmium and copper from aqueous solution by areca-a food waste. J. Hazard. Mater. 157(2), 490–495. DOI: 10.1016/j.jhazmat.2008.01.029.
  • 42. Kumar, U. (2011). Thermodynamics of the Adsorption of Cd (II) from Aqueous Solution on NCRH. I. Jesd. 2(5), 334–336. DOI: 10.7763/IJESD.2011.V2.147.
  • 43. Agrawal, A., Sahu, K.K. & Pandey, B.D. (2004). Removal of zinc from aqueous solutions using sea nodule residue. Coll. Surf. A. 237(1), 133–140. DOI: 10.1016/j.colsurfa.2004.01.034.
  • 44. Tewari, N., Vasudevan, P. & Guha, B.K. (2005). Study on biosorption of Cr (VI) by Mucor hiemalis. Biochem. Eng. J. 23(2), 185–192. DOI: 10.1016/j.bej.2005.01.011.
  • 45. Sharma, Y.C., Prasad, G. & Rupainwar, D.C. (1991). Removal of Ni (II) from aqueous solutions by sorption. Int. J. Environ. Stud. 37(3), 183–191. DOI: 10.1080/00207239108710629.
  • 46. Dai, J. & Mumper, R.J. (2010). Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules 15(10), 7313–7352. DOI: 10.3390/molecules15107313.
  • 47. Ho, Y.S., Porter, J.F. & McKay, G. (2002). Equilibrium isotherm studies for the sorption of divalent metal ions onto peat: copper, nickel and lead single component systems. Water Air Soil Poll. 141(1–4), 1–33. DOI: 10.1023/A:1021304828010.
  • 48. Panday, K.K., Prasad, G. & Singh, V.N. (1984). Removal of Cr (V1) from aqueous solutions by adsorption on flyash-wollastonite. J. Chem. Technol. Biotechnol. 34(7), 367–374. DOI: 10.1002/jctb.5040340703.
  • 49. Varank, G., Demir, A., Yetilmezsoy, K., Top, S., Sekman, E. & Sinan Bilgili, M. (2012). Removal of 4-nitrophenol from aqueous solution by natural low-cost adsorbents. Indian J. Chem. Technol. 19(1), 7–25.
  • 50. Temkin, M.I. & Pyzhev, V. (1940). Kinetics of ammonia synthesis on promoted iron catalysts. Acta Physio.Chim. URSS, 12(3), 217–222.
  • 51. Dąbrowski, A. (2001). Adsorption-from theory to practice. Adv. Coll. Interface. Sci. 93(1), 135–224. DOI: 10.1016/S0001-8686(00)00082-8.
  • 52. Ertugay, N. & Bayhan, Y.K. (2010). The removal of copper (II) ion by using mushroom biomass (Agaricus bisporus) and kinetic modeling. Desalination 255, 137–142. DOI: 10.1016/j.desal.2010.01.002.
  • 53. Weng, C.H. & Wu, Y.C. (2012). Potential low-cost biosorbent for copper removal:pineapple leaf powder. J. Environ.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3f99f32c-2ded-4019-a5c2-5c32dca89bee
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.