PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Evaluation of the Surface Topography of Ti6Al4V Alloy after the Finish Turning Process under Ecological Conditions

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper describes findings in the surface topography of Ti6Al4V alloy after finish turning process under dry and MQL (minimum quantity lubrication) machining. The research was fulfilled in the range of variable feeds per revolution of 0.005-0.25 mm/rev and cutting speeds of 40-100 m/min using the depth of cut of 0.25 mm that fits finish processing conditions. The test plan was developed on the way to use the Parameter Space Investigation (PSI) method. The topography features were measured by a Sensofar S Neox optical profilometer using the Imaging Confocal Microscopy technique. Ra parameters and surface roughness profiles as well as 2D images and contour maps were analyzed. Under the studied machining conditions, lower Ra roughness parameters are obtained in the feed rate of 0.005-0.1 mm/rev and cutting speeds of 40-60 m/min. In comparison with dry machining, up to 17% reduction in Ra parameter values was obtained using the MQL method and vc = 70 m/min and f = 0.127 mm/rev as well as vc = 47.5 m/min and f = 0.22 mm/rev. Depending on the machining conditions, peaks and pits as well as feed marks typical for the turning process are observed on the machined surfaces.
Twórcy
  • Faculty of Mechanical Engineering, University of Zielona Góra, ul. Prof. Z. Szafrana 4, 65-516 Zielona Gora, Poland
  • Faculty of Mechanical Engineering, University of Zielona Góra, ul. Prof. Z. Szafrana 4, 65-516 Zielona Gora, Poland
  • Faculty of Mechanical Engineering, Poznan University of Technology, ul. Piotrowo 3, 60-965 Poznan, Poland
  • Faculty of Mechanical Engineering, University of Zielona Góra, ul. Prof. Z. Szafrana 4, 65-516 Zielona Gora, Poland
  • Faculty of Mechanical Engineering, Bialystok University of Technology, ul. Wiejska 45C, 15-352 Białystok, Poland
Bibliografia
  • 1. Guilherme A.S., Henriques G.E., Zavanelli R.A., Mesquita M.F. Surface roughness and fatigue performance of commercially pure titanium and Ti-6Al-4V alloy after different polishing protocols. Journal of Prosthetic Dentistry. 2005; 93: 378–385.
  • 2. Ezugwu E., Wang Z. Titanium alloys and their machinability – a review. Journal of Materials Processing Technology. 1997; 68: 262–274.
  • 3. Jamil M., Khan A.M., Gupta M.K., Mia M., He N., Li L., Sivalingam V. Influence of CO2-Snow and subzero MQL on thermal aspects in the machining of Ti-6Al-4V. Applied Thermal Engineering. 2020; 177: 1154802020.
  • 4. Jemielniak K. Review of new developments in machining of aerospace materials. Journal of Machine Engineering. 2021; 21(1): 22–55.
  • 5. Leksycki K., Feldshtein E. The surface texture of Ti6Al4V titanium alloy under wet and dry finish turning conditions. In: Industrial Measurements in Machining, Lecture Notes in Mechanical Engineering, Springer, Cham 2021, 33–44.
  • 6. Hardt M., Klocke F., Dobbeler B., Binder M., Jawahir I.S. Experimental study on surface integrity of cryogenically machined Ti-6Al-4V alloy for biomedical devices. Procedia CIRP. 2018; 71: 181–186.
  • 7. Peng Z., Xiangyu Z., Zhang D. Improvement of Ti–6Al–4V surface integrity through the use of high-speed ultrasonic vibration cutting. Tribology International. 2021; 160(2): 107025.
  • 8. Liang X., Liu Z., Liu W., Wang B., Yao G. Surface integrity analysis for high-pressure jet assisted machined Ti-6Al-4V considering cooling pressures and injection positions. Journal of Manufacturing Processes. 2019; 40: 149–159.
  • 9. Agrawal C., Wadhwa J., Pitroda A., Pruncu C. I., Sarikaya M., Khanna N. Comprehensive analysis of tool wear, tool life, surface roughness, costing and carbon emissions in turning Ti–6Al–4V titanium alloy: Cryogenic versus wet machining. Tribology International. 2021; 153: 106597.
  • 10. Leksycki K., Kaczmarek-Pawelska A. Ochal K., Gradzik A., Piemenov D.Y., Giasin K., Chuchala D., Wojciechowski S. Corrosion resistance and surface bioactivity of Ti6Al4V alloy after finish turning under ecological cutting conditions. Materials. 2021; 14(22): 6917.
  • 11. Luan X., Meng J., Huang B.Q., Dong X., Hu Y., Zhao Y., Zhang H., Qu L. Machining characteristics of Ti6Al4V alloy in laser-assisted machining under minimum quantity lubricant. The International Journal of Advanced Manufacturing Technology. 2021; 112: 775–785.
  • 12. Qi B., He N., Li L. Effect of cooling/lubrication medium on machinability of Ti6Al4V. Transactions of Nanjing University of Aeronautics & Astronautics. 2011; 28(3): 225–230.
  • 13. Khan M.A., Jaffery S.H.I., Khan M., Younas M., Butt S.I., Ahmad R., Warsi S.S. Multi-objective optimization of turning titanium-based alloy Ti-6Al-4V under dry, wet, and cryogenic conditions using gray relational analysis (GRA). The International Journal of Advanced Manufacturing Technology. 2020; 106: 3897–3911.
  • 14. Cagan S.C., Buldum B.B. Investigation of the effect of minimum quantity lubrication (MQL) on the machining of titanium and its alloys a review. International Journal of Mechanical and Production Engineering Research and Development. 2017; 7(6): 453–462.
  • 15. ISO 5832-3:2016. Implants for Surgery – Metallic Materials – Part 3: Wrought Titanium 6-Aluminium 4-Vanadium Alloy.
  • 16. Leksycki K., Feldshtein E., Lisowicz J., Chudy R., Mrugalski R. Cutting forces and chip shaping when finish turning of 17-4 PH stainless steel under dry, wet, and MQL machining conditions. Metals. 2020; 10: 1187.
  • 17. Haron C.H.C., Ginting A., Arshad H. Performance of alloyed uncoated and CVD-coated carbide tools in dry milling of titanium alloy Ti-6242S. Journal of Materials Processing Technology. 2007; 185(1–3): 77–82.
  • 18. Egea A.J.S., Martynenko V., Krahmer D.M., Lacalle L.N.L. Benitez, A., Genovese G. On the cutting performance of segmented diamond blades when dry-cutting concrete. Materials. 2018; 11(2): 264.
  • 19. Singh R. Minimum quantity lubrication turning of hard to cut materials – a review. Materials Today: Proceedings. 2021; 37(2): 3601–3605.
  • 20. Statnikov R.B., Statnikov A.R. The Parameter Space Investigation Method Toolkit. Artech House: Boston, MA, USA, 2011.
  • 21. Leksycki K., Feldshtein E., Królczyk G.M., Legutko S. On the chip shaping and surface topography when finish cutting 17-4 PH precipitationhardening stainless steel under near-dry cutting conditions. Materials. 2020; 13: 2188.
  • 22. ISO 16610-21:2011. Geometrical product specifications (GPS) – Filtration – Part 21: Linear profile filters: Gaussian filters.
  • 23. ISO 4287:1997/AMD 1:2009. Geometrical Product Specifications (GPS) — Surface texture: Profile method — Terms, definitions and surface texture parameters — Amendment 1: Peak count number.
  • 24. Garcia-Martinez E., Miguel V., Martinez-Martinez A., Manjabacas M.C., Coello J. Sustainable lubrication methods for the machining of titanium alloys: An overview. Materials. 2019; 12(23): 3852.
  • 25. Liang X., Liu Z., Yao G., Wang B., Ren X. Investigation of surface topography and its deterioration resulting from tool wear evolution when dry turning of titanium alloy Ti-6Al-4V. Tribology International. 2019; 135: 130–142.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3f997fad-a009-4007-9d04-6b57db07e643
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.