PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparative Analysis of NOMA and OMA Schemes : GSVD-based NOMA Systems and the Role of Mobile Edge Computing

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents a comprehensive study that examines the fundamental concept of the non-orthogonal multiple access (NOMA) scheme and provides its detailed comparison with the orthogonal multiple access (OMA) technique. Furthermore, the paper explores the application of the generalized singular value decomposition (GSVD) method in conjunction with NOMA, accompanied by a detailed review of GSVD-based NOMA systems. This study also introduces the concept of mobile edge computing (MEC) and extensively discusses its key parameters. Furthermore, a comprehensive analysis of NOMA MEC is presented, shedding light on its potential advantages and challenges. The aims of this study are to provide a comprehensive understanding of the aforementioned topics and contribute to the advancement of MIMO-NOMA systems.
Rocznik
Tom
Strony
11--20
Opis fizyczny
Bibliogr. 38 poz., rys., tab., wykr.
Twórcy
autor
  • University of Manchester, Manchester, United Kingdom
Bibliografia
  • [1] B. Makki et al., "A Survey of NOMA: Current Status and Open Research Challenges", IEEE Open Journal of the Communications Society, vol. 1, pp. 179-189, 2020 (https://doi.org/10.1109/OJCOMS.2020.2969899).
  • [2] M. Taherzadeh, H. Nikopour, A. Bayesteh, and H. Baligh, "SCMA Codebook Design", in: 2014 IEEE 80th Vehicular Technology Conference (VTC2014-Fall), Vancouver, Canada, pp. 1-5, 2014 (https://doi.org/10.1109/VTCFall.2014.6966170).
  • [3] J. Zeng et al., "Pattern Division Multiple Access (PDMA) for Cellular Future Radio Access", in: 2015 International Conference on Wireless Communications & Signal Processing (WCSP), Nanjing, China, pp. 1-5, 2015 (https://doi.org/10.1109/WCSP.2015.7341229).
  • [4] Y. Cao, H. Sun, J. Soriaga, and T. Ji, "Resource Spread Multiple Access - A Novel Transmission Scheme for 5G Uplink", in: 2017 IEEE 86th Vehicular Technology Conference (VTC-Fall), Toronto, Canada, 2017 (https://doi.org/10.1109/VTCFall.2017.8288412).
  • [5] Z. Yuan et al., "Multi-User Shared Access for Internet of Things", in: 2016 IEEE 83rd Vehicular Technology Conference (VTC Spring), Nanjing, China, 2016 (https://doi.org/10.1109/VTCSpring.2016.7504361).
  • [6] S. Hu et al., "Nonorthogonal Interleave-Grid Multiple Access Scheme for Industrial Internet of Things in 5G Network", IEEE Transactions on Industrial Informatics, vol. 14, no. 12, pp. 5436-5446, 2018 (https://doi.org/10.1109/TII.2018.2858142).
  • [7] B. Clerckx et al., "Rate Splitting for MIMO Wireless Networks: a Promising Physical Layer Strategy for LTE Evolution", IEEE Communications Magazine, vol. 54, no. 5, pp. 98-105, 2016 (https://doi.org/10.1109/MCOM.2016.7470942).
  • [8] A. Benjebbour, "An Overview of Non-Orthogonal Multiple Access", ZTE Communications, vol. 15, no. 1, pp. 28-34, 2017 (https://doi.org/10.3969/j.issn.1673-5188.2017.01.005).
  • [9] M. Aldababsa et al., "A Tutorial on Non-orthogonal Multiple Access for 5G and Beyond", Wireless Communications and Mobile Computing, pp. 1-24, 2018 (https://doi.org/10.1155/2018/9713450).
  • [10] Z. Ding, R. Schober, and H.V. Poor, "Unveiling the Importance of SIC in NOMA Systems - Part 1: State of the Art and Recent Findings", IEEE Communications Letters, vol. 24, no. 11, pp. 2373-2377, 2020 (https://doi.org/10.1109/LCOMM.2020.3012604).
  • [11] Z. Yang et al., "Sum-Rate Maximization of Uplink Rate Splitting Multiple Access (RSMA) Communication", in: 2019 IEEE Global Communications Conference (GLOBECOM), Waikoloa, USA, 2019 (https://doi.org/10.1109/GLOBECOM38437.2019.9013344).
  • [12] C.C. Paige, "Computing the Generalized Singular Value Decomposition", SIAM Journal on Scientific and Statistical Computing, vol. 7, no. 4, pp. 1126-1146,1986 (https://doi.org/10.1137/0907077).
  • [13] S. Doclo and M. Moonen, "GSVD-based Optimal Filtering for Single and Multi-microphone Speech Enhancement", IEEE Transactions on Signal Processing, vol. 50, no. 9, pp. 2230-2244, 2002 (https://doi.org/10.1109/TSP.2002.801937).
  • [14] O. Alter, P.O. Brown, and D. Botstein, "Generalized Singular Value Decomposition for Comparative Analysis of Genome-scale Expression Data Sets of Two Different Organisms", Proceedings of the National Academy of Sciences, vol. 100, no. 6, pp. 3351-3356, 2003 (https://doi.org/10.1073/pnas.0530258100).
  • [15] Z. Chen, Z. Ding, X. Dai, and R. Schober, "Asymptotic Performance Analysis of GSVD-NOMA Systems with a Large-Scale Antenna Array", IEEE Transactions on Wireless Communications, vol. 18, no. 1, pp. 575-590, 2019 (https://doi.org/10.1109/TWC.2018.2883102).
  • [16] C. Rao, Z. Ding, and X. Dai, "GSVD-Based MIMO-NOMA Security Transmission", IEEE Wireless Communications Letters, vol. 10, no. 7, pp. 1484-1487, 2021 (https://doi.org/10.1109/LWC.2021.3071365).
  • [17] S. Ali., A. Fakoorian, and A.L. Swindlehurst, "Dirty Paper Coding versus Linear GSVD-Based Precoding in MIMO Broadcast Channel with Confidential Messages", in: 2011 IEEE Global Telecommunications Conference - GLOBECOM 2011, Houston, USA, 2011 (https://doi.org/10.1109/GLOCOM.2011.6134129).
  • [18] W. Mei, Z. Chen, and J. Fang, "GSVD-based Precoding in MIMO Systems with Integrated Services", IEEE Signal Processing Letters, vol. 23, no. 11, pp. 1528-1532, 2016 (https://doi.org/10.1109/LSP.2016.2606349).
  • [19] C. Rao, Z. Ding, and X. Dai, "Application of GSVD-based Precoding in MIMO-NOMA Relaying Systems", IET Communications, vol. 14, no. 21, pp. 3802-3812, 2020 (https://doi.org/10.1049/iet-com.2020.0555).
  • [20] M.F. Hanif and Z. Ding, "Robust Power Allocation in MIMO-NOMA Systems", IEEE Wireless Communications Letters, vol. 8, no. 6, pp. 1541-1545, 2019 (https://doi.org/10.1109/LWC.2019.2926277).
  • [21] Y. Dursun, F. Fang, and Z. Ding, "Hybrid NOMA based MIMO Offloading for Mobile Edge Computing in 6G Networks", China Communications, vol. 19, no. 10, pp. 12-20, 2022 (https://doi.org/10.23919/JCC.2022.00.024).
  • [22] Y. Dursun, M.B. Goktas, and Z. Ding, "Green NOMA based MU-MIMO Transmission for MEC in 6G Networks", Computer Networks, vol. 228, art. no. 109749, 2023 (https://doi.org/10.1016/j.comnet.2023.109749).
  • [23] Y. Dursun, K. Wang, and Z. Ding, "Secrecy sum rate maximization for a MIMO-NOMA uplink transmission in 6G networks", Physical Communication, vol. 53, art. no. 101675, 2022 (https://doi.org/10.1016/j.phycom.2022.101675).
  • [24] F. Fang et al., "Optimal Resource Allocation for Delay Minimization in NOMA-MEC Networks", IEEE Transactions on Communications, vol. 68, no. 12, pp. 7867-7881, 2020 (https://doi.org/10.1109/TCOMM.2020.3020068).
  • [25] G. Li et al., "Latency Minimization for IRS-Aided NOMA MEC Systems with WPT-enabled IoT Devices", IEEE Internet of Things Journal, vol. 10, no. 14, pp. 12156-12168, 2023 (https://doi.org/10.1109/JIOT.2023.3240395).
  • [26] S.S. Yılmaz and B. Ozbek, "Massive MIMO-NOMA Based MEC in Task Offloading for Delay Minimization", IEEE Access, vol. 11, pp. 162-170, 2022 (https://doi.org/10.1109/ACCESS.2022.3232731).
  • [27] Y. Zhang, Z. Na, Y. Wang, and C. Ji, "Joint power allocation and deployment optimization for HAP-assisted NOMA-MEC System", Wireless Networks, pp. 1-13, 2022 (https://doi.org/10.1007/s11276-022-03201-8).
  • [28] F. Guo et al., "Joint Trajectory and Computation Offloading Optimization for UAV-assisted MEC with NOMA", in: IEEE INFOCOM 2019 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), Paris, France, 2019, (https://doi.org/10.1109/INFOCOMWKSHPS47286.2019.9093764).
  • [29] C. Zheng and W. Zhou, "Computation Bits Maximization in Backscatter-assisted Wireless-powered NOMA-MEC Networks", EURASIP J. on Wireless Communications and Networking, art. no. 23, 2022 (https://doi.org/10.1186/s13638-022-02097-4).
  • [30] Y. Xu, T. Zhang, Y. Zou, and Y. Liu, "Reconfigurable Intelligence Surface Aided UAV-MEC Systems with NOMA", IEEE Communications Letters, vol. 26, no. 9, pp. 2121-2125, 2022 (https://doi.org/10.1109/LCOMM.2022.3183285).
  • [31] I. Altin and M. Akar, "A Joint Resource Allocation Method for Hybrid NOMA MEC Offloading", Physical Communication, vol. 54, art. no. 101809, 2022 (https://doi.org/10.1016/j.phycom.2022.101809).
  • [32] L. Lin, W. Zhou, Z. Yang, and J. Liu, "Deep Reinforcement Learning-based Task Scheduling and Resource Allocation for NOMA-MEC in Industrial Internet of Things", Peer-to-Peer Networking and Applications, vol. 16, no. 1, pp. 170-188, 2023 (https://doi.org/10.1007/s12083-022-01348-x).
  • [33] C. Li, H. Wang, and R. Song, "Mobility-Aware Offloading and Resource Allocation in NOMA-MEC Systems via DC", IEEE Communications Letters, vol. 26, no. 5, pp. 1091-1095, 2022 (https://doi.org/10.1109/LCOMM.2022.3154434).
  • [34] T.V. Truong and A. Nayyar, "System Performance and Optimization in NOMA Mobile Edge Computing Surveillance Network using GA and PSO", Computer Networks, vol. 223, art. no. 109575, 2023 (https://doi.org/10.1016/j.comnet.2023.109575).
  • [35] M. Chen, Y. Wan, M. Wen, and T. Zhou, "Fairness Optimization in IRS-assisted MEC Computational Offloading", Physical Communication, vol. 54, art. no. 101855, 2022 (https://doi.org/10.1016/j.phycom.2022.101855).
  • [36] C-L. Wang, Y.-C. Ding, Y.-C. Wang, "A Low-Complexity Power Allocation Scheme for MIMO-NOMA Systems with Imperfect Channel Estimation", in: 2022 IEEE 33rd Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), Kyoto, Japan, pp. 234-239, 2022 (https://doi.org/10.1109/PIMRC54779.2022.9977487).
  • [37] L. Khamidullina, A.L.F. de Almeida, and M. Haardt, "Multilinear Generalized Singular Value Decomposition (ML-GSVD) and its Application to Multiuser MIMO Systems", IEEE Transactions on Signal Processing, vol. 70, pp. 2783-2797, 2022 (https://doi.org/10.1109/TSP.2022.3178902).
  • [38] L. Khamidullina, A.L.F. de Almeida, and M. Haardt, "Rate Splitting and Precoding Strategies for Multi-User MIMO Broadcast Channels with Common and Private Streams", in: ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Rhodes Island, Greece, 2023 (https://doi.org/10.1109/ICASSP49357.2023.10095138).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3f960093-43cd-4c41-8384-8bc655a01119
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.